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SUMMARY
Non-small cell lung cancer (NSCLC) is characterized by molecular heterogeneity with diverse immune cell
infiltration patterns, which has been linked to therapy sensitivity and resistance. However, full understanding
of how immune cell phenotypes vary across different patient subgroups is lacking. Here, we dissect the
NSCLC tumor microenvironment at high resolution by integrating 1,283,972 single cells from 556 samples
and 318 patients across 29 datasets, including our dataset capturing cells with lowmRNA content.We stratify
patients into immune-deserted, B cell, T cell, and myeloid cell subtypes. Using bulk samples with genomic
and clinical information, we identify cellular components associated with tumor histology and genotypes.
We then focus on the analysis of tissue-resident neutrophils (TRNs) and uncover distinct subpopulations
that acquire new functional properties in the tissue microenvironment, providing evidence for the plasticity
of TRNs. Finally, we show that a TRN-derived gene signature is associated with anti-programmed cell death
ligand 1 (PD-L1) treatment failure.
INTRODUCTION

Non-small cell lung cancer (NSCLC) is a highly aggressive and

heterogenous disease with diverse histological subtypes and

distinct mutational signatures,1 which accounts for an annual

global death rate of 1.8 million patients.2 The technical advances

in single-cell RNA sequencing (scRNA-seq) technologies

enabled the dissection of the complex NSCLC tumor microenvi-

ronment (TME) in different stages, and numerous scRNA-seq

NSCLC studies have identified a hitherto underestimated TME

heterogeneity in early and advanced disease.3–13 Furthermore,

these studies highlighted the importance of small cell popula-

tions in governing essential biological pathways such as immune
Cancer Cell 40, 1503–1520, Decem
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cell activation or trafficking by tumor endothelial cells.6 However,

a major limitation of these studies is the limited number of

analyzed patient samples per study. Moreover, the lack of

genomic data as well as long-term follow-up data prevents

comprehensive dissection of the biological heterogeneity and

its potential contribution to therapy resistance and survival

outcome.

Technical andmethodological variations between the different

studies result in significant inconsistencies and knowledge gaps.

As such, not all cell types (e.g., neutrophilic granulocytes) have

been portrayed in the same depth and extension yet, posing

an unmet need to characterize these populations as well. In

NSCLC, it is well accepted that next to cancer cells, leukocytes
ber 12, 2022 ª 2022 The Authors. Published by Elsevier Inc. 1503
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Figure 1. Schematic outline of the overall concept used in this study

(A) Summary of the data integration and analysis workflow.

(B) Overview of the core NSCLC atlas and the epithelial, immune, and stromal/endothelial components depicted as uniform manifold approximation and pro-

jection (UMAP) plots.

(C) Fractions of depicted cell types per scRNA-seq platform.

(D) UMAP of the UKIM-V dataset (n = 17) colored by cell type.

(E) Core atlas extended by Leader11 and UKIM-V-2 datasets.

(legend continued on next page)
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compose the majority of cells within the TME.12,14 Particularly

since immunotherapy is routinely used in clinical practice, in-

depth characterization of the cancer immune cell compartment

has been intensively pushed forward, and diverse cellular sub-

sets have been profiled.5,9,15 Previous compositional analyses

by flow cytometry as well as histological work ups suggested

that neutrophils compose a significant proportion of all tumor-

resident leukocytes, with an estimated abundance ranging

from 8% to 20%.14,16,17 Intriguingly, when looking at the

scRNA-seq studies in NSCLC published over the last years, neu-

trophils are clearly underrepresented. This discrepancy is most

likely based on technical issues rather than on biological phe-

nomena, but its clarification is of immense importance for our

fundamental immunological understanding of NSCLC and for

potential translational clinical investigations. This notion is un-

derscored by pre-clinical data suggesting that neutrophils are

essential mediators of both pro- and anti-tumor inflammatory

pathways (reviewed in Shaul and Fridlender18), including the po-

tential of neutrophils to limit lymphocyte trafficking into malig-

nant tumors, thereby limiting efficacy of programmed cell death

1 (PD-1) inhibition.19 Correlative studies in patients with NSCLC

have linked the neutrophil:lymphocyte ratio with clinical outcome

and response to immunotherapy.19–21 Additionally, pre-clinical

evidence strongly supports the use of neutrophil-depleting

agents (e.g., CXCR2 antagonists) as an adjunction to immune-

checkpoint inhibitors.19

To overcome the above-mentioned hurdles, we compiled ma-

jor publicly available datasets into a comprehensive NSCLC

scRNA-seq atlas covering 232 patients with NSCLC and 86

non-cancer controls. Additionally, given the scarcity of neutro-

phil single-cell data, we complemented the atlas by analyzing

samples from 17 patients with NSCLC using a platform that cap-

tures cells with very low transcript count and carried out deep

characterization of tissue-resident neutrophils (TRNs) including

both tumor-associated neutrophils (TANs) and normal adjacent

tissue-associated neutrophils (NANs).

RESULTS

Generation of a core large-scale NSCLC single-cell atlas
We first developed a core NSCLC atlas by compiling scRNA-seq

data from 19 studies and 21 datasets comprising 505 samples

from 298 patients (Figure 1A). This comprehensive NSCLC sin-

gle-cell atlas integrates expert-curated, quality-assured, and

pre-analyzed transcriptomic data from publicly available studies

as well as our own dataset (UKIM-V) in early and advanced stage

NSCLC of any histology (see STARmethods; Figures S1A–S1K).

Important study characteristics are summarized in Table S1. In

total, the core atlas includes transcriptomic data from 212 pa-

tients with NSCLC and 86 control individuals, comprising 196

tumor samples and 168 non-tumor control samples. Of the 212

patients with NSCLC, 156 were histopathologically annotated

as lung adenocarcinoma (LUAD), 41 as lung squamous cell car-
(F) Cell-type composition by histopathological tumor type (LUAD, LUSC). FDR =

(G) Immunohistochemistry staining of neutrophils (ASD+ cells), macrophages (C

(n = 55) versus LUSC (n = 55). Evaluation was performed by two separate expert lu

whiskers extend to the interquartile range; Wilcoxon test, *p < 0.05, ****p < 0.000

See also Figures S1 and Tables S1, S2, and S3.
cinoma (LUSC), and 15 were not otherwise specified (NSCLC

NOS). NSCLC samples include tissue of the primary tumor

(n = 176) or metastasis (n = 45) that were obtained either by sur-

gical resection or by computed tomography- and bronchos-

copy-guided biopsies. We clustered the disease stages of the

patients with NSCLC as early (UICC stage I–II) versus advanced

(UICC III–IV) diseases, as not all studies provided sufficient infor-

mation on tumor stages. Among the control samples, 89 were

derived from distant non-malignant tissue of patients with lung

tumors (annotated as normal_adjacent), of which 65 have a pa-

tient-matched tumor sample. Further, 10 samples were derived

from non-tumor-affected lymph nodes of patients with NSCLC

(annotated as normal) and 79 samples from patients without

evident lung cancer history (annotated as normal). Of the control

patients, 18 had a history of chronic obstructive pulmonary dis-

ease (COPD). Overall, the core atlas integrates 898,422 single

cells, which are annotated to 12 coarse cell-type identities and

44 major cell subtypes or cell states (e.g., dividing cells) based

on previously established canonical single-cell signatures (Fig-

ure S1A) including 169,223 epithelial cells, 670,409 immune

cells, and 58,790 stromal and endothelial cells (Figure 1B). We

also annotated important CD8+ T cell subclusters (terminally ex-

hausted, activated, effector memory, naive, natural killer [NK]-

like, dividing) using previously reported marker genes22 (Fig-

ure S1J). The cell-type composition for each dataset, the tissue

of origin, and the patients within the core atlas are shown in

Figures S1B and S1C.

Previous scRNA-seq studies discriminated the clinically rele-

vant types of LUSC and LUAD. The UKIM-V dataset was histo-

pathologically classified by routine pathologists followed by

independent review by expert lung pathologists (S.P. and

C.K.). Cancer cells (in total, 83,439 cells, from primary tumor

and metastatic tissue) in the atlas showed high heterogeneity

of their transcriptomic profiles (Figure 1B). Due to the large pa-

tient cohort, we were able to apply high-resolution lung cancer

cell classification based on their specific marker gene expres-

sion signatures (Figure S1D). We divided the followingmain clus-

ters LUSC (KRT5, KRT6A, KRT17, SOX2, NTRK2, TP63); LUAD

(CD24,MUC1, KRT7,NAPSA,NKX2-1,MSLN); LUAD with signs

of epithelial-to-mesenchymal transition (LUAD EMT) (VIM, SER-

PINE1, CDH1, MIF); LUAD with neuroendocrine features (LUAD

NE) (CHGA, SYP,NCAM1, TUBA1A); LUADwith high expression

of mesothelin (MSLN) associated with EMT and metastasis

(LUAD MSLN);23 and NSCLC expressing both LUAD and LUSC

markers (NSCLC mixed) (MUC1, KRT7, KRT6A, SOX2)

(Figures 1B and S1D). There are highly mitotic/proliferative clus-

ters (TOP2A,MKI67) of both LUAD and LUSC that may resemble

highly aggressive and invasive cancer cells. The LUAD EMT cells

likely resemble an invasive, pro-metastatic cluster characterized

by the plasminogen activator PAI1 (SERPINE1) or the mesen-

chymal protein vimentin (VIM) that are both involved in cell adhe-

sion, invasion, and angiogenesis.24,25 Besides, all subclusters

showed a high expression of the conserved non-coding RNAs
0.1.

D68+ cells), and T cells CD4 (CD4+ cells) per high-power field (HPF) in LUAD

ng pathologists (C.K. and S.P.). The horizontal line represents the median, and

1.
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MALAT1 and NEAT1 (Figure S1D) that were previously linked

to metastasis formation in NSCLC.26,27 For all subsequent

analyses, we used the histopathological annotation LUAD

or LUSC.

Neutrophils are underrepresented in most scRNA-seq
studies
In both tumor and normal lung tissue of all core atlas samples,

the neutrophil cluster (FCGR3B, CSF3R, CXCR2, and G0S2)

comprised 8,468 cells with overt lowmRNA counts. Overall, neu-

trophils account for only 1.5% of all atlas cells (Figure S1E).

Remarkably, 78% of all atlas neutrophils derive from the

UKIM-V dataset (Figures 1C and S1B), in which neutrophils

compose 12% of all cells and 18% of all leucocytes, respec-

tively. The remaining neutrophil data originate mainly from four

other datasets,4,5,10,12 in all of which neutrophils comprise less

than 6% of all leucocytes. Particularly in those studies using

the droplet-based 10x Chromium platform, neutrophils are

completely absent or only rarely depicted (Figure S1F). Our

comparative flow cytometry analysis demonstrated that neutro-

phils account for 10%–20% of all leucocytes in NSCLC tumor

and normal adjacent tissues (n = 63) (Figure S1G), which is in

accordance with previous flow cytometry and histology

data.14,16,17 Thus, low neutrophil abundance seen in previous

scRNA-seq datasets suggests an underrepresentation, most

likely due to technical issues. Neutrophils are fragile, short-lived

cells (circulatory half-life of 7–10 h in humans18), are particularly

sensitive to handling procedures, and express an exceptionally

low amount of mRNA molecules.4 Comparative analysis of

scRNA-seq platforms indicated that the BD Rhapsody workflow

captures a notably high number of mRNAmolecules per cell and

may thus be especially suitable to depict low-mRNA-content

cells (Figure S1H). As a consequence, neutrophils represented

a major cell cluster in the UKIM-V dataset generated with BD

Rhapsody, whereas the low-mRNA-content neutrophil cluster

could not be appropriately detected in the datasets generated

with 10x Chromium, as also described recently,28 and only to a

very limited extend when applying other platforms (Figure 1C).

scRNA-seq of low-mRNA-content cells
Due to high clinical relevance of neutrophils and the need for their

better in-depth transcriptomic characterization, we used the

advantage of the BD Rhapsody platform in depicting cells with

low mRNA content for further analysis. As our initial dataset

included only three patients, we next performed scRNA-seq of

an additional 14 patients with NSCLC to increase the statistical

weight of our cohort (UKIM-V cohort). In total, our dataset

contains tumor and adjacent normal lung tissue from 17 patients

(6 male, 11 female) undergoing lobectomy for treatment-naive

NSCLC (12 LUAD, 5 LUSC). Cells were freshly isolated, pro-

cessed, and sequenced as described in detail in the STAR

methods. The UKIM-V dataset (1 and 2) comprises 122,902 cells

that cluster into all main lung cell types defined by the expression

of specific marker genes (Figure 1D). Neutrophils are character-

ized as a cell cluster with exceptionally low mRNA content and

thus a relatively low number of detected transcripts, but due to

the relatively high number of mRNA molecules captured per

cell (unique molecular identifier [UMI] counts in epithelial cells:

8,938), we could readily depict these cells. The 15,190 neutro-
1506 Cancer Cell 40, 1503–1520, December 12, 2022
phils identified in the UKIM-V dataset were derived from control

lung (n = 6,378) and corresponding tumor tissue (n = 8,812).

Extension of the core single-cell atlas by transfer
learning
To combine the strength of the core atlas with our own data

including neutrophils, we used the recently developed transfer-

learning method scArches,29 which enables the extension of

the core atlas using additional current, as well as future, data-

sets. We mapped our second UKIM-V dataset as well as one

recently published dataset comprising 288,157 cells11 onto the

atlas (Figure 1E). The cell-type annotations were transferred

from the core atlas to the two new datasets on the basis of tran-

scriptomic similarity in the batch-corrected joint embedding (see

STAR methods). This extended atlas now integrates 29 datasets

from 19 studies and comprises 1,283,972 cells, 44 cell types,

556 samples, and 318 patients, resulting in 1.75 billion expres-

sion values. The overall cell-type composition of the extended

atlas is shown in Figure S1I, and the patient numbers per cell

type are shown in Table S2. All subsequent analyses were car-

ried out on the extended atlas dataset unless otherwise specified

(Table S3).

Identification of changes in cell-type compositions in distinct

histological or genetic tumor types and tumor stages is of utmost

importance as it can highlight hetero-cellular interactions and

possibly enable association(s) with therapy response. However,

detecting shifts in cell-type composition using scRNA-seq data

is challenging due to the inherent bias present in cell-type com-

positions and low sample sizes. We therefore adopted a

Bayesian model for identifying changes in cell-type composi-

tions while controlling for the false discovery rate (scCODA

tool30). scCODA requires setting a reference cell type that is

assumed to be constant between conditions. When comparing

cellular composition in LUSC and LUAD in primary tumor tissue

with cancer cells as reference cell type, we found a significantly

higher proportion of neutrophils in LUSC, whereas macro-

phages, CD4+ T cells, alveolar cells type 2, and transitional

club/AT2 were more abundant in LUAD (Figure 1F). The analysis

of the cell-type compositions in early-stage compared with

advanced-stage NSCLC tumors showed a higher abundance

of cDC2 in the early stage (Figure S1K). To validate the findings,

we carried out orthogonal validation using an external cohort of

110 patients with NSCLC (55 LUAD and 55 LUSC) and immuno-

histochemistry staining for neutrophils, CD4+ T cells, andmacro-

phages. The validation results confirmed the findings (Figure 1G)

and further support histology-specific TME characteristics.

Single-cell composition of the TME reveals distinct
NSCLC tumor immune phenotypes
Next, we stratified patients with NSCLC based on infiltration pat-

terns of their TME using the extended atlas. Unsupervised clus-

tering on batch-corrected cell-type fractions revealed four

distinct tumor immune phenotypes (Figure 2A): (1) immune-de-

serted (ID) tumors (i.e., no significant immune cell infiltration

but a high cancer cell fraction); (2) the subtype of tumors with

B cell dominance (B; B cell, plasma cell, mast cells); (3) the sub-

type of tumors with myeloid dominance (M; macrophage/mono-

cyte); and (4) the subtype of tumors with T cell dominance

(T; CD8+, CD4+, T regulatory cells). The affiliation of UKIM-V
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Figure 2. Tumor immune phenotypes in NSCLC

(A) Patient characteristics and stratification of the tumor immune phenotypes. Tumor type (histopathological) refers to the histological subtypes as provided by

the original datasets based on pathological assessment; tumor type (transcriptomic) is based on the most abundant transcriptomically annotated cancer-cell

subtype in the scRNA-seq atlas.

(B and C) Differential activation of (B) PROGENy cancer pathways and (C) CytoSig cytokine signaling signatures in cancer cells between the four tumor immune

phenotypes. Heatmap colors indicate the deviation from the overall mean, independent of tumor histology and stage. White dots indicate significant interactions

at different FDR thresholds. Only cytokine signatures with an FDR <0.1 in at least one patient group are shown.

See also Figure S2.
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patients to myeloid cell and T cell subtypes was validated using

flow cytometry (Figures S2A and S2B). Across the strata, most

patients of the B cell, myeloid cell, and T cell subtypes showed

LUAD histology, while half of the patients with LUSC were

over-represented in the ID subtype (Figure S2C). Neutrophils

were excluded from patient stratification since they are under-

represented in most datasets. Using logistic regression, we did

not find any association of the different patient strata to tumor

stages (early versus advanced) or sex.

To identify tumor-cell-based TME imprinting characteristics,

we next analyzed differentially enriched pathways31 in the can-

cer cells of each of the four immune phenotypes. The ID subtype

showed significant downregulation (false discovery rate [FDR]

<0.1) of the androgen pathway (Figure 2B). Previously, androgen

receptor signaling has been shown to suppress programmed

cell death ligand 1 (PD-L1) transcription in hepatocellular carci-

noma (HCC) cells and may thus exert immune stimulatory

effects.32 Analysis of differentially expressed transcription fac-

tors33,34 in the cancer cells of each subtype showed a significant

downregulation of FOXO4 in the ID subtype (Figure S2D). As pre-

viously reported, FOXO transcription factors are essential medi-

ators of immune cell homeostasis,35 and FOXO4 downregulation

could thus promote an ID phenotype.

We then applied the tool CytoSig36 to define enriched cytokine

signaling signatures in cancer cells of each immune phenotype
(Figure 2C). CytoSig analyzes defined cytokine signatures that

are differentially expressed when a cell is exposed to a specific

cytokine (that is name giving for the respective cytokine signa-

ture). As expected, most signatures are downregulated in the

ID group; solely, the signature of the tolerogenic cytokine

interleukin-4 (IL-4), a modulator of T regulatory cell-mediated im-

mune suppression,37 was significantly elevated (Figure 2C). We

found a significant upregulation of interferon type I–III signatures

in the myeloid subgroup, suggesting a particularly important role

of macrophages/monocytes in interferon signaling in the TME

(Figure 2C).

Analysis of cell-cell communication reveals hetero-
cellular crosstalk in the TME
Using the CellPhoneDB ligand-receptor complexes database,

we next assessed differences in the hetero-cellular crosstalk of

cancer cells toward diverse immune cells among the two major

histotypes LUAD and LUSC by analyzing the top 10 differentially

expressed cancer cell ligands (Figure 3A; the top 30 ligands are

shown in Figure S3A). Overall, in both histologies, cancer cellular

interactions were directed to diverse immune cell subtypes with

different targets. In LUAD, we found a prominent upregulation of

the KDR-VEGFA axis from cancer cells toward neutrophils, mac-

rophages/monocytes, mast cells, and classical dendritic cells

(cDCs), potentially implicating immunosuppressive signaling by
Cancer Cell 40, 1503–1520, December 12, 2022 1507
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Figure 3. Cellular crosstalk analysis

(A) Circos plot of the cellular crosstalk of cancer cells toward the major immune cells in LUAD versus LUSC. Shown are the top 10 differentially expressed cancer

cell ligands. Red interactions are upregulated in LUAD, and blue interactions are upregulated in LUSC.

(B) Cancer-immune cell crosstalk in each patient subtype. Top panel: differentially expressed ligands of cancer cells in each subtype (B, M, T, ID) (DESeq2 on

pseudo-bulk, FDR < 0.1). Bottom panel: respective receptors and the expression by cell type. Dot sizes and colors refer to the fraction of cells expressing the

receptor and gene expression, respectively, averaged over all patients. Dots are only shown for receptors that are expressed in at least 10% of the cells of the

respective cell types.

See also Figure S3.
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cancer cells in this histotype.38 Other major LUAD pathways

involve the immunosuppressive macrophage scavenger recep-

tor MARCO39 as well as ADGRE5-CD55 signaling, associated

with migration and invasion.40 Conversely, in LUSC cancer cells,

there is upregulation of pro-migratory SPP1 signaling41 that has

previously been reported as upregulated in lung cancer tissue

particularly of squamous histology,42 as well as an upregulation

of Jagged1 (JAG1), which induces NOTCH, thereby promoting

tumor progression and regulating the tumor immune microenvi-

ronment via, e.g., neutrophil recruitment.43

Next, we investigated the crosstalk of cancer cells to immune

cells within the patient immune subtypes T cell, B cell, myeloid

cell, and ID by analyzing differentially expressed cancer cell

ligands (Figure 3B). While downregulated in the ID subgroup,

B, M, and lesser T cell subgroups showed upregulated signaling

of several chemokines (CXCL9/10/11, CCL3/13/18) to their

cognate receptors on T and myeloid cell subsets, suggesting

that cancer-cell-secreted chemokine gradients contribute to im-

mune infiltration.44

Integration of bulk RNA-seq data reveals genotype-
immune phenotype associations
scRNA-seq provides an unprecedented view on the cellular het-

erogeneity in the TME. However, the majority of the scRNA-seq

studies lack both cancer genotype information and survival data.

The TCGA reference dataset includes this information together

with bulk RNA-seq data. Using the recently published computa-

tional method SCISSOR,45 we evaluated the association of

atlas-derived cell-type transcriptomic signatures with genotype

and survival data from the TCGA reference dataset including

1,026 patients (UICC I-IV, LUAD, and LUSC). In a previous pan-

cancer study using bulk RNA-seq data, we have shown that

genomic features including mutational load, tumor heterogeneity,

and specific driver genes determine immune phenotypes.46 Here,

the high resolution of the single-cell NSCLC atlas enabled an in-

depth analysis of these determinants. EGFR, TP53, KRAS,

and STK11 mutations showed distinct immune infiltrates

(Figures 4A–4D, S4A, and S4B). For example, cDC1 and cDC2

showed opposite infiltration patterns in patients with LUAD with

mutations of either EGRF (high cDC infiltration, as reported previ-

ously47) orKRAS andSTK11 (lowcDC infiltration) (Figures 4A–4D).

Conversely, TP53- and STK11-mutated genotypes were associ-

ated with CD8+ T infiltration, which is not seen in EGFR- or

KRAS-mutated tumors (Figures 4C, 4D, S4A, and S4B). High

CD8+ T cell infiltration in TP53-mutated LUAD has also been
Figure 4. Association of cellular composition and distinct genotypes a

(A–E and G) SCISSOR analysis relating phenotypic information from bulk RNA-s

positively (blue) or negatively (red) associated with mutation or better survival. A

respectively. Shown are cell types with a log2 ratio significantly different from 0

(A) Association of cellular composition with KRAS mutation in patients with LUAD

(B) Association of cellular composition with EGFR mutation in patients with LUAD

(C) Association of cellular composition with STK11 mutation in patients with LUA

(D) Association of cellular composition with STK11 mutation in patients with LUS

(E) Association of cellular composition with overall survival.

(F) Kaplan-Meyer plot of patients with high (top 25%) and low (bottom 25%) B ce

with EPIC. p value has been determined using CoxPH regression using tumor st

(G) Association of cellular composition with overall focusing on CD8+ T cell subclu

et al.22

See also Figure S4.
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describedpreviously.47Hence,our single-cell viewof theTMEpro-

vides further evidence for the link between the genetic makeup of

the tumor, the histology, and the respective immune contexture.48

Given the importance of the driver genes in terms of treatment de-

cisions, we confirmed our findings by orthogonal validation of the

genotype-immunophenotype associations using two external co-

horts (n = 19 and n = 37) (Figures S4C and S4D).

We next analyzed the cell-type transcriptomic signatures and

their association with survival in 1,026 patients from the TCGA

cohort. Overall, patients with NSCLC with B cell-rich tumors

showed a prominent association with improved survival, whereas

neutrophils were the strongest negative survival predictor (Fig-

ure 4E) and were, together with monocytes, the only immune

cell types that were negative predictors in both LUAD and LUSC

(Figures 4E, S4E, and S4F). To support our finding, we used an in-

dependent method based on deconvolution using bulk RNA-seq

data and confirmed that B cells are indeed associated with better

prognosis, albeit significantly only for LUAD (Figures 4F, S4G, and

S4H), which has also been proposed in multiple previous studies

(reviewed in Patel et al.49). Finally, the analysis of the CD8+ T cell

subtypes showed that naive CD8+ T cells were the strongest pre-

dictor for improved survival (Figure 4G).

TRNs acquire new properties in the TME
One unique feature of the large-scale NSCLC atlas we assem-

bled is the enrichment with single-cell expression profiles from

neutrophils generated using samples from 17 patients with

NSCLC, so we focused on the deep characterization of these

cells. TANs are known as a very heterogenous cell population

with both anti- and pro-tumorigenic properties.50 Likely due to

technical reasons, the characterization of NANs lags even further

behind that of TANs. To overcome this insufficient TRN charac-

terization, we here characterized the transcriptomic signatures

of TANs and NANs in NSCLC using the extended atlas

(Figures 5A and 5B). Neutrophils were more abundant in patients

with LUSC compared with those with LUAD (Figure S5A), as

described previously,12 which we confirmed in two external

cohorts by flow cytometry analysis (47 LUAD and 16 LUSC) (Fig-

ure 5C) and immunohistochemistry (55 LUAD and 55 LUSC) (Fig-

ure 1G). The overall TAN phenotype was characterized by high

expression of OLR1 (LOX-1), VEGFA, CD83, ICAM1, and

CXCR4 and low expression of CXCR1, CXCR2, PTGS2, SELL

(CD62L), CSF3R, and FCGR3B (CD16B) (Figure 5D), confirming

previously reported signature genes.18 The TAN characteristic

gene set included expression patterns of both established
nd survival in the TCGA data

eq data from TCGA with single cells. UMAP plots indicate the position of cells

log2 ratio >0 indicates a positive association with mutation or better survival,

at an FDR <0.01 (paired Wilcoxon test).

(n = 156).

(n = 98).

D (n = 141).

C (n = 83).

ll fractions of TCGA patients with lung cancer as determined by deconvolution

age and age as covariates.

sters. CD8+ T cell subclusters were annotated based on gene sets fromOliveira
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Figure 5. Characterization of tissue-resident neutrophils using scRNA-seq

(A and B) UMAP of tissue-resident neutrophils (TRNs) from the extended atlas, (A) classified into tumor-associated neutrophils (TANs) and normal-adjacent

associated neutrophils (NANs) and (B) colored by histology (as defined by histopathological assessment).

(C) Neutrophil fractions (as percentage of leucocytes) by flow cytometry of LUAD and LUSC tumor tissue (LUAD n = 47, LUSC n = 16; Wilcoxon test, **p < 0.01).

The horizontal line represents the median, and whiskers extend to the interquartile range.

(D) Candidate TAN genes. Each dot refers to a patient with at least 10 neutrophils in both NAN and TAN groups. Lines indicate the mean per study. p values are

derived from a paired t test and adjusted for FDR.

(E) Expression levels of VEGFA in various cell types in primary tumor samples. Each dot represents a patient with at least 10 cells (median values, boxes represent

the interquartile range [IQR], whisker data points within 1.5 times the IQR).

(F) Transcription factor analysis of TAN versus NAN using DoRothEA. Each dot represents a single patient, and bars are the mean of all patients. p values are

derived using a paired t test and are FDR adjusted. Shown are transcription factors with a mean score difference >0.2 and an FDR <0.1.

(G) Comparison between tumor and normal-adjacent samples for selected candidate genes using flow cytometry. Each dot represents a patient that was not part

of the scRNA-seq dataset. Paired Wilcoxon test, *p < 0.05, ****p < 0.0001. CD16: the horizontal line represents the median, and whiskers extend to the IQR.

(H) Selected multiplex immunofluorescence (M-IF) staining of LOX-1 (red) and pancytokeratin (green) in tumor tissue andmatched normal-adjacent lung tissue of

a patient with LUSC. Scale bar: 100 mm.

See also Figure S5.
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Figure 6. Tissue-resident neutrophil subtypes in NSCLC

(A) UMAP of all TRNs colored by TAN and NAN subclusters. The neutrophil clusters derive from 85 patients, 42 of whom have >10 neutrophils.

(B) Top 5 markers for each TAN and NAN cluster. The marker gene quality is reflected by the area under the receiver operator characteristics curve (AUROC;

1 = marker gene perfectly distinguished the respective cluster from other clusters in all patients; AUROC 0.5 = no better than random).

(legend continued on next page)
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neutrophil markers (CXCR1, CXCR2, CXCR4, PTGS2) as well as

novel candidates (OLR1, VEGFA, CD83), as discussed below.

In a recent study, remarkable neutrophil adaptability to

different tissue environments was shown,51 suggesting that

while transient, TRNs acquire new properties and function within

tissue. The neutrophil phenotype differs in dependence on

spatial-, temporal-, and disease-specific clues52 as well as

during the evolution from bone-marrow-resident immature

(CXCR4high, CXCR2low, CD16low, CD62Llow, MMElow), to circu-

lating/mature (CXCR2high, CD16high, CD62Lhigh), to aged/senes-

cent neutrophils (CXCR4high).53–55 However, none of these

markers are specific for a certain maturation state. Relative to

TANs, matched NANs in our dataset showed high expression

of established neutrophil maturity markers (SELL, PTSG2,

CXCR2,CXCR1, FCGR3B,MME) as well as canonical neutrophil

markers (S100A8, S100A9, S100A12) (Figures 5D and S5B).

While downregulation of these markers in TANs suggests imma-

turity, we could not identify a clear expression pattern of previ-

ously suggested immaturity signatures.55,56 Notably, CXCR1

and CXCR2 have previously been reported as TAN markers in

NSCLC;4,12 however, our analysis revealed elevated CXCR1/

CXCR2 expression in NANs (Figure 5D). Conversely, low expres-

sion of SELL (CD62L) and CXCR2 (both downregulated in aged

neutrophils57) (Figure 5D) and high expression of the known

neutrophil activation markers CD83 (an inhibitory immune

checkpoint),58,59 the atypical chemokine receptor CCRL2,60

ICAM1 (CD54),57 and C15orf48 (a mitochondrial transcript upre-

gulated during inflammation)61 as well as several cytokines

(CCL3, CCL4L2, CCL4, CXCL2) (Figures 5D and S5B) support

an aged/chronically activated/exhausted TAN phenotype.62

Neutrophils support the pro-angiogenic switch in cancer via

release of VEGF and other pro-angiogenic factors (reviewed in

Ozel et al.63). Our atlas provided evidence that neutrophils repre-

sent a major source for VEGFA expression within the NSCLC

TME (Figure 5E). A highly differentially expressed TAN marker

of major interest is lectin-type oxidized LDL receptor 1 (LOX-1)

encoded by the OLR1 gene that is known as main receptor for

oxidized low-density lipoprotein (LDL)64 (Figures 5D and S5B).

OLR1 has been described as a putative marker to distinguish

normal peripheral blood neutrophils (LOX-1�) from polymorpho-

nuclear myeloid-derived suppressor cells (PMN-MDSCs),65
(C) Quantification of HLA-DR expression by flow cytometry of tumor and normal-a

test, **p < 0.01.

(D) UMAP of TRNs from the UKIM-V dataset with RNA velocity vectors projected

(E) Partition-based graph abstraction (PAGA) based on RNA velocities, projected

(F) Outgoing interactions of TRN subclusters with cancer cells and CD8+ T cells. T

log2 fold change >1). Heatmap colors clipped at ±3. Bottom panel: respective rec

are expressed in at least 10% of the respective cell types.

(G) UMAP of the extended atlas colored by the score of the TRN gene signature

(H) Heatmap of the TAN and NAN gene signatures across the TRN subclusters

clusters.

(I–K) Predictive value of the TRN signature in bulk RNA-seq data from the OAK80 a

PD-L1) or docetaxel (chemotherapy).

(I) Comparison of non-responders (progressive disease) with responders (com

histotype.

(J) Kaplan-Meyer plot comparing patients treated with atezolizumab with high

determined using CoxPH regression including cohort and histology as covariate

(K) Kaplan-Meyer plot comparing patients treated with docetaxel with high (top 2

See also Figure S6 and Tables S4 and S5.
respectively. However, concordant to our results, OLR1 expres-

sion by TANs has been previously described,12 and our compar-

ative analysis to matched NANs underlined the tumor specificity

of this marker. Moreover, peroxisome proliferator-activated

receptor gamma (PPARG), a nuclear receptor and direct

transcriptional regulator of OLR1,66 was elevated in TANs (Fig-

ure 5F). Concordantly, flow cytometry analysis of tissue from pa-

tients with NSCLC (n = 7) confirmed elevated LOX-1 (OLR1)

expression in TANs (Figure 5G). We could further validate the

transcriptomic TAN signature at the protein level by flow cytom-

etry, including elevated expression of CD83 (n = 7) and CD54

(ICAM1) (n = 6) and lower expression of CD181 (CXCR1),

CD62L (SELL) (n = 8), and CD16 (n = 35) (Figure 5G).

We additionally performed multiplex immunofluorescence

staining of paraffin-embedded NSCLC tumor tissue and pa-

tient-matched normal adjacent lung tissue. Co-staining of

LOX-1 and CXCR2 suggested LOX-1 as neutrophil marker

(Figure S5C) (of note, CXCR2 also marks MDSCs67). We found

infiltration of LOX-1+ cells in tumor tissue but not in adjacent

normal-lung tissue (Figure 5H), underlining the cancer-tissue

specificity of this marker.

Plasticity and non-canonical functional properties
of TRNs
Previous studies have proposed transcriptomic subclusters of

neutrophils in NSCLC.4 However, a distinct subclassification

and in-depth characterization of TRN including TANs and NANs

in NSCLC has not been described so far. We applied unsuper-

vised Leiden clustering on all atlas neutrophils (n = 19,166), sepa-

rating four TAN subsets (TAN-1 to TAN-4) and three NAN subsets

(NAN-1 toNAN-3) (Figure 6A) that are backedbymultiple datasets

andmultiple patients (FigureS6A).Marker gene selection revealed

an extensive phenotypic heterogeneity among the clusters and al-

lowed identification of marker genes for each subcluster, of which

the top 5 are given in Figure 6B. The TAN signature genes

described above (OLR1, VEGFA, CXCR4, CD83) showed relative

homogenous expression among all TAN subclusters (Figure S6B).

Overall, NAN clusters showed a predominance in LUAD and TAN

clusters in LUSC tumors (Figures S6C and S6D).

Specific NAN-1 genes included the alarmin S100A12, a known

marker of activated proinflammatory neutrophils,68 and the
djacent tissue. Each dot represents the mean of each patient. Paired Wilcoxon

on top.

on the UMAP plot. Edges represent cell-type transitions called by PAGA.

op panel: differentially expressed ligands in each subcluster (FDR <0.01, abs.

eptors and the expression by cell type. Dots are only shown for receptors that

(38 genes with high specificity for TRNs)

. Colors indicate the mean gene expression across patients in the respective

nd POPLAR79 cohorts of patients with NSCLC treated with atezolizumab (anti-

plete response, partial response) treated with atezolizumab, shown for each

(top 25%) and low (bottom 25%) TRN signature scores. p value has been

s.

5%) and low (bottom 25%) TRN signature scores.
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NETosis co-factor PADI4,69 as well as pro-angiogenic markers

(PROK2, MMP9). The NAN-2 cluster is pretty similar to the

NAN-1 cluster but showed reduced expression of some NAN-

1-specific genes (e.g., S100A12, PADI4, MMP9). NAN-3 shows

strong expression of interferon-stimulated genes (GBP1,

GBP5, IFIT2) (Figure 6B). TAN-1 shows high expression of inter-

leukin 1 receptor antagonist (IL1RN), a known marker of acti-

vated neutrophils that negatively regulates IL-8 secretion to

control excessive neutrophil inflammatory activity,70 as well as

of the potent NF-kB activator RIPK271 and CD44, regulating

cell recruitment and adhesion72 (Figure 6B). These finding sup-

port the concept that the plasticity of neutrophils is profoundly

shaped by the NSCLC TME that attracts and activates

neutrophils.

The TAN-2 subcluster was characterized by the expression of

the major histocompatibility complex (MHC) class II genes HLA-

DRA, CD74, HLA-DMB, and HLA-DRB1, indicating a phenotype

with an immunogenic antigen-presenting feature. Both CD74

and HLA-DRA are also expressed in the other TAN clusters,

albeit at lower levels (Figure 6B). To validate the scRNA-seq find-

ings, we analyzed samples from an additional 11 patients using

flow cytometry, confirming the antigen-presenting phenotype as

seen by an upregulation of HLA-DR on TANs in NSCLC

compared with neutrophils from normal adjacent lung tissue

(Figure 6C). Of note, the transition to HLA-DR+ neutrophils was

accompanied by a shift toward the identified TAN signature

(elevated expression of CD83 and LOX-1 and lower expression

of CD181 [CXCR1], CD62L [SELL], and CD16) in neutrophils

derived from NSCLC tumor tissue (Figure S6E).

The TAN-3 subcluster was characterized by a high expression

of proinflammatory cytokines (C15orf48, CCL3, CCL4, CSTB) as

well as galectin 3 (LGALS3), which is associated with neutrophil

activation and emigration (Figure 6B). Finally, TAN-4 showed

high expression of ribosomal genes (such as RPS12, RPL3,

RPN2, RPL23) (Figure 6B) similar to a neutrophil cluster identified

in patients with severe COVID-19.56 This may suggest the highly

plastic phenotype of TAN-4 eventually transitioning to other cell

phenotypes, as described previously for tumor endothelial cells.6

The transcriptional profiles of the neutrophil subsets indicate

their remarkable phenotypic plasticity. We therefore performed

RNA velocity analysis (see STAR methods) using only the

UKIM-V dataset (which includes treatment-naive patients with

NSCLC only) since the method requires raw sequencing data.

The analysis indicates a transition from NAN-3 to both NAN-2

and NAN-1 (whose transcriptomic signatures are similar). NAN-3

and NAN-2 transition to TAN-2 and TAN-1, respectively, with

TAN-1 and TAN-2 transitioning into all TAN subtypes (Figures 6D

and partition-based graph abstraction73 in 6E). Interestingly, this

TRN evolution seems to follow a one-directory path with TAN-3

as final transition, although at this point we do not know whether

TAN-3 could further transit to other cell types. These observations

support the hypothesis that TAN phenotypes are substantially

modulated by local cues encountered in the TME.18

We next investigated the cellular interactions of TRN subsets

with CD8+ T cells and cancer cells by analyzing differentially ex-

pressed TRN ligands (FDR <0.01, abs(log2FC) >1) of each sub-

set, revealing distinct signaling of NANs versus TANs (Figure 6F).

In all TAN subsets, we found VEGFA signaling toward cancer

cells, again underlining their important proangiogenic role, as
1514 Cancer Cell 40, 1503–1520, December 12, 2022
well as SPP1 signaling, which has been associated with

an immunosuppressive TME74 and pro-migratory75 effects.

CD274 (PD-L1) to PDCD1 (PD-1) signaling is significantly upre-

gulated in TAN-2 while being downregulated in NAN-1, propos-

ing CD8+ T cell-inhibitory effects of TAN that accord well with

previous observations of impeded immunotherapy responses

in neutrophil-rich tumors.19 Conversely, NANs showed promi-

nent interactions involving genes of the tumor-necrosis family

(TNFSF13B, TNFSF10, LTB) that have been previously associ-

ated with neutrophil activation.76,77
TRN gene signature is associated with immune-
checkpoint inhibitor treatment failure
Our deconvolution of the diversity of TRNs at the single-cell level

prompted us to relate this information to patient prognosis and

response to both chemotherapy and therapy with immune-

checkpoint inhibitors (ICIs). Using a previously proposed

approach for finding specific marker genes for cell-type estima-

tion from bulk RNA-seq samples78 (see STAR methods), we

derived a signature of genes that are highly specific for TANs

(n = 18) or NANs (n = 20) and are expressed only at a very low

level in other cells (Figure 6G). We additionally defined a TRN

signature as the union of TAN and NAN signature genes (n =

38) (Table S4). The expression of the TRN signature genes was

heterogeneous between the different TRN subsets (Figure 6H).

In order to analyze the prognostic and predictive value of the

TRN signature, we used bulk RNA-seq data from pre-treatment

tumors from POPLAR79 and OAK,80 two randomized clinical tri-

als of anti-PD-L1 antibody (atezolizumab) versus chemotherapy

(docetaxel) in patients with NSCLC, representing the largest

transcriptional collection in these settings.81 In total, there were

891 patients, of which 439 were treated with atezolizumab (316

LUAD and 123 LUSC) and 452 with docetaxel (313 LUAD and

139 LUSC). The TRN gene signature was associated with anti-

PD-L1 therapy failure in these NSCLC cohorts (Figure 6I). Anal-

ysis of the survival data from these cohorts showed that the

prognostic benefit of the TRN signature was significant for the

anti-PD-L1 arm (Figure 6J) but not for the docetaxel arm (Fig-

ure 6K). The prognostic value for the anti-PD-L1 arm was stron-

ger for LUSC (Figure S6F) compared with LUAD (Figure S6G).

The signatures for the different subsets TRN, namely NANs

and TANs, were both predictive for the anti-PD-L1 arm of the

NSCLC cohorts (Figures S6H and S6I). The results for the signa-

tures for other cell types (Table S5) are shown in Figure S6J.
DISCUSSION

Webuilt a large-scale atlas of single-cell transcriptomesofNSCLC

through integration of 29 datasets spanning over 1,280,000 cells

from 556 samples and 318 individuals representing 1.75 billion

expression values. Reduction of dataset-specific batch effects

due to variation in experimental design and used platforms while

retaining biological information resulted in a high-quality reference

atlas for NSCLC, offering superior coverage of histological and

clinical variables and thereby providing a unique resource for dis-

secting the cellular diversity in the TME and generating hypothe-

ses. We leveraged the information content of the NSCLC atlas

bysequencingadditionalpatient samplesusingaplatformsuitable
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to depict low-mRNA-content cells, which enabled us to compre-

hensively characterize the diversity and plasticity of TRNs.

First, we provide a high-resolution view of the TME in NSCLC

with 44 major cell types/states and show different cell-type

composition patterns in LUAD and LUSC, including more pre-

cise functional transcriptomic classification of malignant epithe-

lial cells in both histotypes. The single-cell composition of the

TME in NSCLC enabled refined tumor classification and patient

stratification into four immune phenotypes: ID, myeloid, B cell,

and T cell subtypes. These findings may have important implica-

tions for improving cancer immunotherapy in NSCLC. For

example, combination therapies that target both myeloid cells

and lymphoid cells could represent an immunotherapeutic strat-

egy to treat myeloid subtypes, as shown recently in a melanoma

mouse model.82 Similarly, given the heterogeneity of the intratu-

moral B cells and the importance of tertiary lymphoid struc-

tures,83 further analysis of the B cell subtype might open prom-

ising therapeutic avenues by additional refined B cell targeting.

Second, integration of bulk RNA-seq data from the TCGA

NSCLC cohort uncovered cell subsets associated with alter-

ations in major driver genes, such as EGFR, KRAS, STK11,

and TP53, in both LUAD and LUSC subtypes, providing further

evidence that genetic aberrations in cancer cells dictate the im-

mune contexture of tumors.48 We validated the findings from the

computational analysis using two independent cohorts and

immunofluorescence/immunohistochemistry assays, confirm-

ing previously published reports on genotype/immunopheno-

type dependencies.47,84,85 This knowledge could be exploited

to derive rationale for personalized therapeutic combination

strategies based on the underlying genetic tumor profile.

Third, we provide in-depth characterization of TRNs including

both TANs and NANs in human NSCLC. Our dissection of the

diversity of TANs suggest that the conflicting reports can be attrib-

uted to the different TRN subsets. Of particular interest for cancer

immunotherapy is the TAN phenotype with an immunogenic anti-

gen-presenting feature. This observation implies acquisition of an-

tigen-presenting-likepropertiesbyneutrophils at the tumor site, as

previously reported.86 Such conversion of neutrophils to antigen-

presenting cells may elicit anti-tumor immunity and has recently

been shown in a murine model.87 Identification of targets that

can block the transition of the antigen-presenting TAN-2 subset

into TAN-1 and TAN-3 or reverse the final phenotypes into

TAN-2 phenotype is an important goal for future studies.

Finally, we report that the TRN-derived gene signature has a

predictive and prognostic effect of the TRN signals for immuno-

therapy-treated patients with NSCLC. Using transcriptomic data

for patients with NSCLC (n = 439) from two randomized clinical

trial cohorts treated with a single anti-PD-L1 antibody (atezolizu-

mab), we provide evidence for the association of TRNs with

therapy failure. Although not statistically significant for the

chemotherapy arm, the similarity of the graphs for both drugs

fits the general paradigm that neutrophil infiltration is associated

with worse anti-tumor outcomes.

Beyond these biological insights, the results from this study

have also important implications. Specifically, the diversity and

plasticity of TRNs shown here further underscore the necessity

to reevaluate the rationale for targeting neutrophils to overcome

ICI therapy resistance in combination therapies using CXCR1

and CXCR2 antagonists and other inhibitors.88 As shown here,
TANs can acquire antigen-presenting properties, and such con-

version of abundant neutrophils to antigen-presenting cells

could overcome the limitations of the low abundance of cross-

presenting DCs.87 We advocate that rigorous approaches are

required to analyze the impact of the TRN diversity and plasticity

on tumor immunity in NSCLC and possibly in other cancers.

Our study, however, has several limitations. First, NSCLCs

show a great intratumor heterogeneity, and the sampling loca-

tion (e.g., tumor core versus tumormargin) may affect the cellular

composition, particularly the in case of biopsies being compared

with tissue pieces from lobe resections. With the exception of

one study,3 all studies incorporated in our atlas applied single

regional sampling without annotation of the exact sampling

area. Thus, our analyses do not take into account this variable,

and we therefore advocate that future studies should include in-

formation about the sampling location. Second, in many cases,

mRNA is not a definite proof of the extent to which a protein is

expressed, and information on both RNA and protein expression

is necessary for getting a complete picture of gene regulation

and single-cell heterogeneity. In neutrophils, this particularly re-

gards granule protein expression that varies throughout granulo-

poiesis, not always strictly correlating with mRNA expression.89

This could partly explain the above-mentioned conflicting litera-

ture results of TAN phenotypes. And third, albeit the association

of the TRN signature with anti-PD-L1 treatment failure was

analyzed using transcriptomic data for patients with NSCLC,

prospective studies are required to show that the TRN signature

indeed represents a bona fide anti-PD-L1 therapy outcome-pre-

dicting marker rather than being a negative prognostic marker.

In conclusion, we provide a NSCLC atlas with single-cell res-

olution as well as a web portal that enables interactive explora-

tion of the dataset through cell-x-gene (https://luca.icbi.at) that

allows visualization of metadata and gene expression. The bio-

logical insights we present here and future discoveries arising

from the exploitation of the high-resolution NSCLC atlas could

provide the basis for developing combination therapies for pa-

tients with NSCLC who are not sufficiently responding to im-

mune-checkpoint blockers.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Antibodies list See Table S9

Biological samples

Fresh resections of tumor tissue and

adjacent normal lung tissue from NSCLC patients

This paper N/A

Critical commercial assays

BD TuDoR� dissociation reagent BD Biosciences Cat#: 661563

BD Pharm Lyse� BD Biosciences Cat#: 555899

BD Rhapsody� Cartridge Kit BD Biosciences Cat#: 633733

BD Rhapsody� Cartridge Reagent Kit BD Biosciences Cat#: 633731

BD� Human Single-Cell Multiplexing Kit BD Biosciences Cat#: 633781

BD Rhapsody� WTA Amplification Kit BD Biosciences Cat#: 633801

BD Rhapsody� cDNA Kit BD Biosciences Cat#: 633773

AMPure XP Beckman Coulter Cat#: A63880

Qubit� dsDNA HS Assay Kit Invitrogen Cat#: Q32854

High Sensitivity D1000 Reagents Agilent Cat#: 5067–5585

High Sensitivity D5000 Reagents Agilent Cat#: 5067–5593

High Sensitivity D1000 ScreenTape Agilent Cat#: 5067–5584

High Sensitivity D5000 ScreenTape Agilent Cat#: 5067–5588

BD Pharmingen� 7-AAD BD Biosciences Cat#: 559925

Calcein AM Invitrogen Cat#: C1430

Draq7 BD Biosciences Cat#: 564904

Opal 7-Color Automated Immunohistochemistry Kit Akoya Biosciences Cat#: NEL821001KT

BOND Epitope Retrival 1 Leica Biosystems Cat#: AR9961

BOND Epitope Retrival 2 Leica Biosystems Cat#: AR9640

BOND Dewax Solution Leica Biosystems Cat#: AR9222

BOND Wash Solution 10x Leica Biosystems Cat#: AR9590

Spectral DAPI Akoya Biosciences Cat#: FP1490

Prolong Diamond Antifade Thermo Fisher Cat#: P36961

BOND Research Detection System Leica Biosystems Cat#: DS9455

BOND Titration Kit Leica Biosystems Cat#: OPT9049

BD TuDoR� dissociation reagent BD Biosciences Cat#: 661563

Spectral DAPI Akoya Biosciences Cat#: FP1490

Prolong Diamond Antifade Thermo Fisher Cat#: P36961

BOND Research Detection System Leica Biosystems Cat#: DS9455

BOND Titration Kit Leica Biosystems Cat#: OPT9049

Deposited data

BD Rhapsody dataset (demultiplexed UMI counts) This study https://doi.org/10.5281/zenodo.6411867

Processed input data This study https://doi.org/10.5281/zenodo.6411867

Results, including intermediate results,

core and extended atlas in h5ad format,

and scArches model

This study https://doi.org/10.5281/zenodo.6411867

Core and extended atlas as cell-x-gene

instance and h5ad/Seurat v3 files with

standardized metadata according to the

cell-x-gene schema

This study https://cellxgene.cziscience.com/

collections/edb893ee-4066-4128-

9aec-5eb2b03f8287

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Adams_Kaminski_2020 scRNA-seq

dataset (processed)

GEO GSE136831

Chen_Zhang2020 scRNA-seq dataset (fastq) SRA PRJNA634159

Goveia_Carmeliet_2020 (processed) (Goveia et al., 2020)6 https://endotheliomics.shinyapps.io/

lung_ectax/

Guo_Zhang_2018 (fastq) EGA EGAS00001002430

Habermann_Kropski_2020 (processed) GEO GSE135893

He_Fan_2021 (fastq) NGDC GSA CRA001963

Kim_Lee_2020 (processed) GEO GSE131907

Lambrechts_Thienpont_2018 (fastq) ArrayExpress E-MTAB-6149, E-MTAB-6653

Laughney_Massague_2020 (processed) GEO GSE123904

Madissoon_Meyer_2020 (processed) (Madissoon et al., 2019)92 https://www.tissuestabilitycellatlas.org/

Maier_Merad_2020 (processed) (Maier et al., 2020)9 https://github.com/effiken/Maier_et_al_

nature_2020

Maynard_Bivona_2020 (fastq) SRA PRJNA591860

Mayr_Schiller_2020 (processed) (Mayr et al., 2021)90 https://github.com/theislab/2020_Mayr

Reyfman_Misharin_2018 (processed) GEO GSE122960

Travaglini_Krasnow_2020 (processed) (Travaglini et al., 2020)97 https://www.synapse.org/#!Synapse:syn21560406

Vieira_Teichmann_2019 (processed) GEO GSE130148

Wu_Zhou_2021 (processed) GEO GSE148071

Zillionis_Klein_2019 (processed) GEO GSE127465

Leader_Merad_2021 (processed) GEO GSE154826

TCGA data RNA-seq and mutation data GDC https://portal.gdc.cancer.gov/

TCGA survival data (Liu et al., 2018)127

Cytosig signatures (Jiang et al., 2021)36 https://github.com/data2intelligence/CytoSig/

CellPhoneDB (Efremova et al., 2020123;

T€urei et al., 2016)130
Downloaded from https://omnipathdb.org/

interactions/?fields=sources,references&

genesymbols=1&databases=CellPhoneDB

on 2022-04-06

Software and algorithms

Seven Bridges - BD Rhapsody� WTA

Analysis Pipeline

Seven Bridges Genomics v1.7.1

FlowJo� BD Biosciences v10.7

Mantra Snap Akoya Biosciences v1.0.4

inForm Tissue Analysis Akoya Biosciences v2.4.10

GraphPad Prism Graphpad v9

Cellranger v5.0.0 10x Genomics https://support.10xgenomics.com/single-cell-

gene-expression/software/pipelines/latest/

what-is-cell-ranger

nf-core RNA-seq pipeline v3.0 (Philip et al., 2022)131 https://github.com/nf-core/rnaseq

Nextflow v22.04.5 (Di Tommaso et al., 2017)132 https://nextflow.io

Singularity/Apptainer v3.7.0–1.el7 (Kurtzer et al., 2017)133 https://apptainer.org/

Nextflow workflow to reproduce this study This study https://github.com/icbi-lab/luca

(https://doi.org/10.5281/zenodo.7104045)

Software packages used for scRNA-seq

analysis are packaged as singularity

containers and available on zenodo

This study https://doi.org/10.5281/zenodo.6411867

Seven Bridges - BD Rhapsody� WTA

Analysis Pipeline

Seven Bridges Genomics v1.7.1

FlowJo� BD Biosciences v10.7

Mantra Snap Akoya Biosciences v1.0.4

inForm Tissue Analysis Akoya Biosciences v2.4.10

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

GraphPad Prism Graphpad v9

Cellranger v5.0.0 10x Genomics https://support.10xgenomics.com/single-

cell-gene-expression/software/pipelines/

latest/what-is-cell-ranger

Other

Compute node CPU Intel Xeon(R) CPU E5-2699A v4 (2x)

GPU node GPU Nvidia Quadro RTX 8000

GPU node CPU AMD EPYC 7352 24-Core (2x)

Atlas web resource This study https://luca.icbi.at
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Zlatko

Trajanoski (zlatko.trajanoski@i-med.ac.at)

Materials availability
The study did not generate new unique reagents.

Data and code availability
d Processed scRNA-seq data from this study has been deposited on Zenodo as listed in the key resources table. Raw data is not

made available due to privacy concerns.

d Processed scRNA-seq data from other studies has been deposited on Zenodo. The original study identifiers are listed in the key

resources table.

d Final and intermediate results of the computational analysis are made available on Zenodo.

d All code to reproduce this study is wrapped into a nextflow workflow and publicly available on Github. All software depen-

dencies are made available as singularity containers. Some of the algorithms employed (scVI, scANVI, UMAP) involve stochas-

tic processes that require specific hardware for exact reproducibility (see key resources table).

d Microscopy data reported in this paper will be shared by the lead contact upon request. Any additional information required to

reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects
Samples of NSCLC tumor tissues and matched adjacent normal lung tissues (more than 5 cm distance to the tumor) were obtained

from surgical specimens of patients undergoing resection at the Department of Visceral, Transplant and Thoracic Surgery (VTT),

Medical University Innsbruck, Austria, and in collaboration with the INNPATH GmbH, Innsbruck, Austria, after obtaining informed

consent in accordance with a protocol reviewed and approved by the Institutional Review Board at theMedical University Innsbruck,

Austria (study code: AN214-0293 342/4.5). Demographic details are provided in Table S6.

METHOD DETAILS

Preparation of NSCLC tissue and normal lung tissue
Surgically resected NSCLC tumor tissues and adjacent normal tissues were minced into small pieces (<1 mm) on ice and enzymat-

ically digestedwith agitation for 30min at 37�Cusing the BDTuDoR� dissociation reagent (BDBiosciences). The obtained single-cell

solution was sieved through a 70 mM cell strainer (Corning) and red blood cells were removed using the BD Pharm Lyse� lysing

solution (BD Biosciences). Cells were counted and viability assessed with the BD Rhapsody scRNA-seq platform (BD Biosciences)

using Calcein-AM (Invitrogen) and Draq7 (BD Biosciences).

BD Rhapsody library preparation and sequencing
Freshly isolated single-cells were immediately processed with the BD Rhapsody scRNA-seq platform (BD Biosciences). The BD

Single-Cell Multiplexing Kit (BD Biosciences) was used to combine and load two samples (tumor tissue and normal adjacent tissue)

onto a single BD Rhapsody� cartridge (BD Biosciences). Sample-tag staining was performed according to the manufacturer’s
Cancer Cell 40, 1503–1520.e1–e8, December 12, 2022 e3
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protocol (sample-tag staining at room temperature for 20min andwashing by centrifugation at 400 g for 5min). Single-cell isolation in

microwells (cell load: 20 min incubation at room temperature) with subsequent cell-lysis and capturing of poly-adenylated mRNA

molecules with barcoded, magnetic capture-beads was performed according to the manufacturer’s instructions. Beads were

magnetically retrieved from the microwells, pooled into a single tube before reverse transcription. Unique molecular identifiers

(UMIs) were added to the cDNA molecules during cDNA synthesis. Whole transcriptome amplification (WTA) and sample-tag

sequencing libraries were generated according to the BD Rhapsody single-cell whole-transcriptome amplification workflow. The

quantity and quality of the sequencing libraries was analyzed with the Qubit dsDNA HS (High Sensitivity) assay kit (Invitrogen) and

the 4200 TapeStation (Agilent) system. Libraries were sequenced on the Novaseq 6000 system (Illumina) targeting a sequencing

depth of 50.000 reads/cell.

Flow cytometry
Cells isolated from surgically resected NSCLC tumor tissues and adjacent normal tissueswere stainedwith a backbone cocktail of 12

antibodies (CD56, CD3, CD8, CD4, CD45, HLA-DR, CD31, CD14, CD15, CD326, CD19, CD16) which, was complemented either with

an additional 8 antibodies (CD28, CD38, CD123, CD34, CD161, CD193, TCRgd, CD90) to define all cell populations, or several

mixtures of up to three antibodies (CD54, CD83, CD49b, CD62L, LOX-1, CD181) for a detailed characterization of neutrophils, at

pre-titrated concentrations. All source data of the aforementioned antibodies is provided in the key resources table, applied

flourochromes are listed in Table S7. After washing and addition of 5 mL 7-AAD, the cells were measured on a FACSymphony A5

flow cytometer (BD Biosciences). Data were analyzed using FlowJo v10.7 software. For details of the gating strategy see Figure S7.

Multiplex immunofluorescence
NSCLC tumor and tumor-adjacent tissue samples were fixed in 4% formalin for 6–72 h and embedded in paraffin. Four-micrometer

sections were used for the immunofluorescence staining. Immunofluorescence staining on formalin-fixed paraffin-embedded (FFPE)

tissue was performed using the Opal 7-Color Automated Immunohistochemistry Kit (cat: NEL821001KT, Akoya Biosciences, Menlo

Park, USA). Amultiplex panel of immunemarkers was developed with antibodies against: CD16 (clone EPR22409-124, Abcam), CD8

(clone C8/144B, Dako), CD68 (clone PG-M1, Dako), CD3 (polyclonal, Dako), CD20 (clone L26, Dako), cytokeratin (clone AE1/AE3,

Dako; clone C-11, Abcam). In additional settings antibodies were used against: CD16 (clone EPR22409-124, Abcam), CXCR2 (clone

EPR22301-103, Abcam), OLR1 (polyclonal, Sigma Life Science) (further information given in Table S7). The staining procedure was

performed using an automated staining system (BOND-RX, Leica Biosystems). All markers were sequentially applied and paired with

respective Opal fluorophores (Table S7). To visualize cell nuclei, the tissue was stained with 4‘,6-diamidino-2-phenylindole (spectral

DAPI, Akoya Biosciences). Stained slides were scanned usingMantra 2 Quantitative PathologyWorkstation (Akoya Biosciences) and

representative images from each tissue were acquired with theMantra Snap software v1.0.4. Spectral unmixing, multispectral image

analysis and cell phenotyping was carried out using the inForm Tissue Analysis Software v2.4.10 (Akoya Biosciences). In short, DAPI

staining was used to segment cells. The perinuclear area (the defined 4-pixel area around nuclei) was therefore defined to be cell

cytoplasm. Thereafter, the total cell area was evaluated for nucleic/cytoplasmic/membrane marker expression. The inForm build-

in algorithm for cell phenotyping was used to define the intensity threshold for the positivity of each marker individually and each

cell was characterized/phenotyped by presence/absence of the marker.

Immunohistochemistry
Staining of the validation cohort was approved by the Internal Review Board of the University of Luebeck (file number 16–277). Tissue

microarrays (TMA) were constructed from formalin-fixed paraffin-embedded (FFPE) tumor blocks originating from surgical samples.

In short, for TMA construction each sample was represented in triplicates of 0.6 mm diameter cores. A tumor sample was incorpo-

rated in further analysis if at least one core was evaluable. The validation cohort included 55 chemo-naive LUAD and LUSC, respec-

tively, with no history of previous malignancies or history of receiving chemotherapy or radiotherapy. Immunohistochemistry (IHC)

staining was performed according to the manufacturer’s instructions, using the Ventana Discovery (Ventana Medical System)

automated staining system. Slides were incubated with a primary antibody against CD4 (CD4 SP35, Ventana, RTU) to detect

CD4+ lymphocytes and with a primary antibody against CD68 (KP1, Ventana, RTU) to detect macrophages (Table S7). They were

further stained with chloroacetate-esterase (Naphthol-AS-D-chloracetate, Serva) to highlight neutrophils. To evaluate the immune

cell infiltration, CD4+ lymphocytes, macrophages and neutrophils were counted in three high power fields (HPFs) per core, meaning

that up to nine HPFs per casewere assessed. Two experienced pathologists (SP andCK) performed an independent evaluation of the

slides.

Staining of CXCR2 to detect neutrophils was performed using the rabbit antibody against CXCR2 (EPR22301-103, Abcam) diluted

in a Primary Antibody Diluent Buffer (Primary antibody diluent, Leica Biosystems). The staining protocol included a standard antigen

retrieval stepwith CC1/pH9 buffer (Discovery CC1, Ventana), incubation with the primary antibody for 0.5 h at room temperature (RT).

Antibody staining was detected by DAB. Neutrophils were counted in 5 HPFs.

Generation of the core atlas
The data for the core atlas was from previously published NSCLC studies,3–8,10,12,15,90,91 our own data (n = 3), and 7 studies for con-

trol purpose.91–97 The selected studies were published between July 2018 andMay 2021 and the incorporated datasets were gener-

ated with six different sequencing platforms, including the most commonly applied 10x Chromium (10x Genomics) as well as
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Smart-seq2,98 GEXSCOPE (Singleron), inDrop99 and Drop-Seq.100 We further integrated our own data generated with themicrowell-

based BDRhapsody scRNA-seq platform (BDBiosciences). We specifically selected studies using comparable protocols for sample

processing and data generation, such as sequencing of whole cells. We did not exclude studies that applied flow cytometry-based

cell-sorting prior to sequencing, as these incorporate relevant information on rare cell types.6,9,15 From non-NSCLC studieswe exclu-

sively included those parts of the published data that were relevant for our atlas: from theMadissoon dataset92 we only included lung

samples, from Adams,95 Reyfman,93 Habermann,96 Vieira Braga,94 and Mayr90 datasets we only used the control samples (including

normal lung tissue of tumor patients, which we termed ‘‘normal_adjacent’’ or lung tissue of organ donors without history of pulmonary

disease). From the Adams et al. dataset we also included data from patients (n = 18) with chronic obstructive pulmonary disease

(COPD) as chronic inflammatory pulmonary disease cohort with an increased lung cancer risk.

Preprocessing and quality control of scRNA-seq data
We distinguish between studies (i.e. a scientific publication) and datasets (i.e. scRNA-seq samples that were generated using the

same sample preparation and the same experimental platform). Each study may contain one or multiple datasets. Demultiplexed

FASTQ files of the UKIM-V datasets weremerged and processed using the Seven Bridges Genomics cloud server with the BDRhap-

sody WTA Analysis Pipeline. Samples from the studies Chen_Zhang_2020, Guo_Zhang_2018, He_Fan_2021, Lambrechts_

Thienpont_2018 andMaynard_Bivona_2020 were obtained as raw fastq files from the identifiers specified in the key resources table.

Smart-seq2 data were processed using the nf-core RNA-seq pipeline101,102 with the GRCh38 reference genome and GENCODE v33

annotations. 10x datasets were processed with cellranger v5.0.0 (10x Genomics) and the GRCh38-2020-A reference database as

provided by 10x Genomics. All other datasets were obtained as count tables from their respective identifiers. All datasets were

loaded into AnnData containers103 with consistent structure. Quality control was performed with scanpy104 by thresholding the num-

ber of detected genes, counts and the fraction of mitochondrial reads. Thresholds were determined per dataset by visual inspection

of the distributions and are listed in Table S8.

Integration of scRNA-seq datasets
Individual datasets were merged into a single AnnData object. Since genome annotations partly differed between the datasets, we

re-mapped gene identifiers on the latest version of HGNC gene symbols using the https://mygene.info API.105 In case of duplicate

gene symbols, the one with the maximum read count was retained. If gene symbols were missing from a dataset, the values were

filled with zeros. Gene symbols that were missing in more than 5 datasets (25%) were excluded altogether.

We integrated the datasets using the scANVI algorithm,106,107 as it has been demonstrated to be one of the top-performing

methods for atlas-level integration and to scale to >1M cells.108 Since scANVI requires cell-type annotations for at least one of

the input datasets, we manually annotated two ‘‘seed’’ datasets based on unsupervised clustering as described below. We chose

Lambrechts_Thienpont_2018_6653 and Maynard_Bivona_2020 as seed datasets as they were not experimentally enriched for spe-

cific cell-types and were sequenced on two platforms with very different characteristics (10x and Smart-seq2). Raw counts were

used as input for scANVI. The Smart-seq2 counts were scaled by the gene length as recommended on the scvi-tools website.

The scANVI model was initialized with a pre-trained scVI model,109 as recommended in the scvi-tools tutorial. The scVI model

was trained on the 6000 most highly variable genes as determined with scanpy’s104 pp.highly_variable_genes with parameters

flavor=’’seurat_v300 and batch_key=’’dataset’’. Each sample was considered as an individual batch for both scVI and scANVI. Other

than that the algorithms were run with default parameters.

Doublet-detection
For droplet-based scRNA-seq datasets we ran the SOLO algorithm110 to computationally detect multiplets. We chose SOLO over

other doublet detection methods as it is readily integrated into scvi-tools,107 and was found to be one of the top-performing methods

in an independent benchmark.111 We used the SOLO implementation from scvi-tools and initialized SOLO with a pre-trained

scVI model.

Unsupervised clustering and cell-type annotation
We computed UMAP embeddings112 and unsupervised Leiden-clustering113 with scanpy,104 based on a cell-cell neighborhood

graph derived from scANVI latent space. Coarse, lineage-specific clusters were iteratively sub-clustered to identify cell-types at a

more fine-grained resolution. Cell type clusters were annotated based on previously reported marker genes92,114,115 (Figure S1A).

CD8+ T cell subclusters were annotated based on gene sets from Oliveira et al.22

Integrating additional datasets
Two datasets, Leader_Merad_2021 and UKIM-V-2, were added after the completion and annotation of the core atlas. The datasets

(‘‘query’’) were projected onto the atlas (‘‘reference’’) using scArches29 as implemented in scvi-tools.107 scVI and scANVI models

were re-trained on the fully annotated, doublet-filtered core atlas, with the parameters recommended for scArches: use_layer_

norm=’’both’’, use_batch_norm=’’none’’, encode_covariates=True, dropout_rate=0.2, and n_layers=2. Gene-symbols of the query

datasets were re-mapped as described above andmissing gene symbols filled with zeros. For each query dataset, scArches yielded

an embedding in the same latent space as the core atlas. Based on the joint latent space, a neighborhood graph and UMAP embed-

ding were computed for the ‘‘extended’’ atlas. Cell-types were annotated automatically, based on a majority vote of nearest
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neighbors. To this end, let C be the pairwise weighted connectivity matrix of the scanpy neighborhood graph computed on the

scArches embedding. Then, the transitive connectivity matrix C0 (i.e., including connections to neighbors of neighbors) is defined

as C0 = C$C where the dot operator refers to the matrix product. Let further Q be the set of all query cells, R the set of all reference

cells, and T the set of all cell-types. Then, for every cell q˛Q the cell-type is determined as

argmax
t˛T

X

r ˛R

sðt; rÞ C0qr

where the indicator function sðt; rÞ is 1 if cell r is of type t and 0 otherwise. The transitive connectivity matrix C0 was chosen over C to

increase robustness by increasing the number of neighbors, and to ensure that every cell from the query has connection to a cell in the

reference.

Comparing cell-type abundances
Since comparing cell-type fractions between groups is challenging due to different characteristics of the datasets and the inherent

compositional nature of cell-type fractions, we applied the scCODA30 model, which addresses this issue. We were interested in the

differences between conditions (LUAD vs. LUSC). To this end, we ran the scCODA model with the formula � condition +

tumor_stage + dataset with 500,000 iterations using ‘‘cancer cells’’ as the reference cell-type, where tumor_stage is a binary vector

classifying datasets into early (stages I-II) and advanced (stages III-IV), and dataset is a categorical vector encoding the different da-

tasets. For the comparison, we excluded the Guo_Zhang_2018 dataset, which only contains T cells. The final result shows credible

effects with a false-discovery-rate (FDR) of 0.1.

Patient stratification
We stratified patients into immune phenotypes based on immune cell-type fractions. We selected all patients with primary tumor

samples and excluded the Guo_Zhang_2018 dataset, because it contains only T cells. Neutrophil fractions were excluded, since

they are not appropriately captured in the majority of datasets. Cell-type fractions of primary tumor samples were loaded into a

patient 3 cell-type AnnData container. Dataset-specific batch-effects were removed using a linear model as implemented in

scanpy.pp.regress_out. Patients were clustered using graph-based Leiden clustering with the ‘‘correlation’’ distance metric for

computing the neighborhood graph. Patient clusters were labeled according to their predominant cell-types. In addition to the his-

tological subtypes based on the annotation of the original datasets, we annotated tumor types based on the transcriptomics data

according to the most abundant cancer cell cluster.

RNA velocity analysis
We performed RNA-velocity analysis on the UKIM-V dataset using velocyto.py116 and scvelo.117 BAM files as generated by the BD

Rhapsody WTA analysis pipeline were preprocessed with samtools118 to make them compatible with velocyto.py (see

preprocessing/bd_rhapsody/velocyto.nf in our git repository for more details). Loom files generated by velocyto.py were loaded

into scvelo to estimate and visualize RNA velocities according to the scvelo tutorial. Partition-based graph abstraction (PAGA,73)

was computed based on the RNA velocity graph, using neutrophil subclusters as grouping variable and the optionminium_spanning_

tree=False. The result was visualized as a graph showing the transition confidences as directed edges.

Differential gene expression testing
We used DESeq2119 on pseudo-bulk samples for differential expression testing which has been demonstrated to perform well and

properly correct for false discoveries.120 For each cell-type and patient, we summed up transcript counts for each gene. Pseudo-bulk

samples consisting of fewer than 10 cells were discarded. We compared primary tumor samples from LUAD vs. LUSC (condition),

primary tumor samples from the patient subtypes M/B/T/desert (group), NANs vs. TANs (cell_type_tan_nan), and Neutrophil clusters

(NAN1-3, TAN1-4), including the dataset as a covariate. For comparisons between multiple groups, we used contrasts with sum-to-

zero coding. p-values were adjusted for multiple hypothesis testing with independent hypothesis weighting (IHW).121

Pathway, TF and cytokine signaling signatures
We performed pathway, transcription factor (TF), and cytokine signaling analysis on primary tumor samples with PROGENy,31,34

DoROthEA33,34 and CytoSig,36 respectively. Scores were computed using the dorothea-py and progeny-py packages. The top

1,000 target genes of the progeny model were used, as recommended for single-cell data. For dorothea, only regulons of the highest

confidence levels ‘‘A’’ and ‘‘B’’ were used. The cytosig signaturematrix was obtained from the data2intelligence/CytoSigGitHub repos-

itory and usedwith the scoring function implemented in the progeny-py package. Themethodswere runwith the options num_perm=0,

center=True, norm=True scale=True, and min_size=5. No permutations were used, as we perform statistics in a separate step at the

level of biological replicates. Pathway-, transcription factor-, and cytosig scores were then compared between condition (LUAD vs.

LUSC) and patient group (T vs. B vs. M vs. deserted) using an ordinary least-squares (OLS) linear model, as implemented in the stats-

models package.122 Scores were aggregated into pseudobulk samples by computing the mean of each variable for each patient and

cell-type. Samples consisting of less than 10 cells were discarded. For each variable, we fitted a model with the formulas� condition +

dataset + tumor_stage or� group + dataset + condition + tumor_stage, respectively. Coefficients were obtained from the linear model

and p-values calculated with the f-test. p-values were adjusted for multiple testing with the Benjamini-Hochberg procedure.
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Cellphonedb analysis
We used the cellphonedb (CPDB) database123 as obtained from omnipathdb124 to investigate differences in cell-to-cell communica-

tion in primary tumor samples. The original CPDB algorithm performs statistical comparisons based on a permutation test which is

designed to find differences between cell-types. For our study, on the other hand, we were interested in differences between con-

ditions, using patients as biological replicates. Therefore, we followed an approach similar to the degs_analysismode recently added

to CPDB v3125: For each cell-type of interest, we considered the list of significantly differentially expressed signaling molecules in

CPDB (ligands or receptors, for outgoing and incoming interactions, respectively). For each of those differentially expressed signaling

molecules and for each cell-type, we determined interaction partners that are potentially affected by that change, as those that are

expressed in at least 10% of the cells in a certain cell-type. Differentially expressed signaling molecules were determined with

DESeq2 as described above. The fraction of cells expressing a signaling molecule was computed as the mean of fractions per pa-

tient, to avoid biases due to different cell-counts per patient.

SCISSOR analysis
We used SCISSOR126 to associate phenotypic data from bulk RNA-seq experiments with our single-cell data. TCGA mutation and

gene expression data was obtained from the GDC portal, survival data from.127 SCISSOR was run on primary tumor cells of each

patient individually according to the SCISSOR tutorial using mutation data (logistic regression) and overall survival (cox-regression)

as dependent variables. A grid search for the alpha-parameter was performed in 2� i=2 with i˛ ½24; 23; :::; 2� and a cutoff parameter

of 0.3. 21 of 176 samples with low overall cell count failed during SCISSOR’s Seurat-preprocessing step and were excluded from the

subsequent analysis. For each patient and cell-type, we computed the fraction of scissor + cells (i.e. positively associated with a mu-

tation or worse survival), scissor- cells (i.e. negatively associated), and neutral cells and added a pseudo-count of 0.01. A sample was

excluded from a cell-type if it contributed% 10 cells. For each cell-type, we computed the log2-ratio of scissor+ and scissor- cells as

the mean fraction of scissor + cells vs. the mean fraction of scissor- cells. Significant differences were determined by comparing the

fractions of scissor+ and scissor- cells with a paired wilcoxon test with zero_method=’’zsplit’’ as implemented in the scipy package.

p-values were Benjamini-Hochberg-adjusted and considered significant at an FDR <0.01.

TRN clusters
For an unbiased discovery of TRN subtypes, we performed unsupervised clustering of all cells annotated as neutrophils. The neigh-

borhood graph was computed with scanpy.pp.neighbors with n_neighbors=30 based on the scANVI latent space. Clusters were

determined with scanpy.tl.leidenwith resolution=0.75. Two subclusters dominated by cells from normal adjacent tissue were labeled

normal-associated neutrophils (NAN) 1, 2, and 3, whereas four subclusters of cells from primary tumor samples were labeled tumor-

associated neutrophils (TAN) 1, 2, 3 and 4.

TRN signatures
Gene signatures for TRN and TRN clusters were determined based on fold-change (FC), specific fold-change (sFC), and area under

the receiver operator characteristics curve (AUROC), applying an approach previously used to find cell-type-specificmarker genes.78

We have previously shown the resulting gene signatures to be highly specific for their respective cell-types.128 To avoidmarker genes

being biased towards samples contributing more cells than on average we aggregated single cells to pseudo-bulk samples120 by

patient before deriving marker genes. For each set of marker genes derived, pseudo-bulk samples were generated by summing

up raw counts for each patient and cell-type of interest. The resulting samples were normalized to counts per million (CPM) and

log2-transformed with scanpy.pp.log1p(adata, base=2). Pseudo-bulk samples consisting of fewer than 10 cells were discarded.

For each gene and cell-type, FC and sFC were computed as described in.78 AUROC was computed using roc_auc_score as imple-

mented in scikit-learn. For identifying marker genes for the 7 neutrophil subclusters, we applied a permissive cutoff of sFC >1 and

FC > 1.5 and ranked genes by AUROC. For the TAN and NAN signature used to compute signature scores in bulk RNA-seq data,

we empirically determined optimal cut-offs by grid search and cross-validation: First, the single-cell input data were randomly split

by patients into 80% training data and 20% independent test set. On the training data, five-fold cross validation was performed. On

the training set of each fold, metrics were computed as described above and all possible combinations of sFC˛{0.5, 0.6,., 2.9}, FC

˛{0.5, 0.6, ., 2.9} and AUROC ˛{0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.96, 0.97} were tested, resulting in a total of 5,000 possible signa-

tures. On the test set of each fold, a pseudo-bulk sample per patient (mixing all cell-types) was generated and the true fraction of the

cell-type of interest calculated. The quality of each signature was evaluated as the Pearson correlation between the signature score

(see section ‘‘Signature scoring in bulk RNA-seq samples’’ below) and the true cell-type fraction. The cut-off with the highest average

correlation across the five folds was chosen as optimal. Finally, the signature was re-calculated on the entire training set using the

optimal cut-off, and a final Pearson correlation determined on the independent test set. We defined a TRN signature to capture

Neutrophils independent of their subtype as the union of the TAN and the NAN signature genes.

Signature scoring in bulk RNA-seq samples
Signature scores in scRNA-seq data were computed using scanpy.tl.score_genes. Bulk RNA-seq primary tumor samples samples of

TCGA LUAD and LUSC were retrieved as TPM from the GDC portal. Bulk RNA-seq samples from NSCLC patients treated with ate-

zolizumab (anti-PD-L1) or docetaxel (chemotherapy) from the POPLAR79 and OAK80 trials were retrieved using the accession

numbers reported in.81 Similar to an approach previously described,11 enrichment scores for our TRN signatures were calculated
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as follows: For all signature genes, z-scores were computed across all samples from a dataset. The final signature score was defined

as the mean of the z-scores of the signature genes for each sample. Associations of the TRN signature with response to immuno-

therapy or chemotherapy in the POPLAR and OAK datasets was tested using logistic regression in R with the formula response �
signature_score + tumor_type + dataset, where tumor_type represents LUAD and LUSC encoded as a binary vector.

Survival analysis
Survival analysis was performed using CoxPH-regression as implemented in the R package survival. Kaplan-Meyer plots were

created using the R package survminer, showing the top 25% vs. bottom 25% of samples stratified by signature score. B cell frac-

tions in TCGA samples were estimated using EPIC129 as implemented in immunedeconv, as we have previously shown EPIC to be

one of the best performing methods on B cells.128 Cox-regression was performed on B cell fractions (TCGA data) with the formula

survival � signature_score + ajcc_stage + age, where ajcc_stage is a categorical vector with tumor stages I-IV. For neutrophil frac-

tions (POPLAR + OAK data) the formula survival� signature_score + dataset + treatmentwas used. For comparisons comprising the

entire NSCLC cohort (i.e. both LUAD and LUSC), tumor_type was included as an additional covariate.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed using the statsmodels library in Python (scRNA-seq data) or GraphPad Prism (flow cytometry and

imaging data) using a linear model, t-test or wilcoxon test as appropriate. Single cell-data were aggregated into pseudobulk samples

by biological replicates. Compositional analysis of cell-type fractions was performed using scCODA; survival analysis using CoxPH

regression in R. P-values for untargeted analyses (DE genes, TFs, or pathways) were FDR-adjusted. Significance levels and more

details on the statistical tests are indicated in the figure captions.

ADDITIONAL RESOURCES

The single-cell atlas can be assessed via cell-x-gene (https://luca.icbi.at), a web-based viewer for single-cell datasets that allows

visualization of metadata and gene expression.
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Figure S1: related to Figure 1. Composition of the NSCLC single-cell atlas. 
(A) Dotplot of cell type marker genes used for cell-type annotation.

(B) Fractions of cell types, sample origins and conditions per study (extended atlas).

(C) Relative cell type proportions by tissue origin in the core atlas. The depicted fractions are the average of 

all patients, independent of their cell-count.

(D) Marker genes for cancer cell classification.

(E) Cell type fractions in the extended atlas.

(F) Mean neutrophil fraction per sequencing platform across all datasets.

(G) Flow-cytometry of neutrophils (shown as percentage of leucocytes) in tumor tissue and patient-matched 

normal-adjacent tissue (n=63; Paired Wilcoxon test, **p<0.01). The horizontal line represents the median, 

whiskers extend to the inter-quartile range.

(H) Number of reads (Smart-seq2) or UMIs (other platforms) in epithelial cells by sequencing platform. The 

central line denotes the median, boxes represent the interquartile range (IQR) and whiskers extend to the most 

extreme values within 1.5 * IQR. Points outside 1.5 * IQR are shown as outliers.

(I) UMAP of the extended atlas, colored by the medium resolution cell-type annotation used for most 

data analyses.

(J) UMAP of CD8+ T cell subclusters according to gene signatures published by Oliveira et al.22.

(K) Cell type composition by tumor stage (early, late) calculated with scCODA (Bayesian model for 

differential composition analysis) using cancer cells as reference cell-type (assumed to be constant between 

conditions), including tumor type (LUAD, LUSC) as a covariate and running 500,000 Markov-chain monte 

carlo iterations. FDR=0.1.



Table S2: related to Figure 1. Patient number per cell type. 

Number of patients with ≥ 5/ ≥10 / ≥ 30 cells 
Cell type 5 10 30 
Alveolar cell type 1 133 113 69 
Alveolar cell type 2 172 161 122 
B cell 226 196 164 
B cell dividing 26 16 6 
cDC1 131 99 32 
cDC2 256 231 172 
Ciliated 175 140 87 
Club 101 54 21 
DC mature 133 79 21 
Endothelial cell arterial 108 65 33 
Endothelial cell capillary 118 93 54 
Endothelial cell lymphatic 129 90 37 
Endothelial cell venous 207 171 96 
Fibroblast adventitial 123 80 33 
Fibroblast alveolar 107 75 38 
Fibroblast peribronchial 115 78 38 
Macrophage 291 273 242 
Macrophage alveolar 228 201 177 
Mast cell 205 178 120 
Mesothelial 31 18 2 
Monocyte classical 276 257 222 
Monocyte non-classical 149 120 74 
Myeloid dividing 195 153 76 
Neutrophils 60 48 35 
NK cell 238 219 186 
NK cell dividing 71 28 3 
pDC 151 113 55 
Pericyte 83 52 22 
Plasma cell 218 186 131 
Plasma cell dividing 44 26 6 
ROS1+ healthy epithelial 38 29 16 
Smooth muscle cell 85 48 25 
Stromal dividing 14 9 3 
T cell CD4 269 253 209 
T cell CD4 dividing 141 99 32 
T cell CD8 activated 144 122 76 
T cell CD8 dividing 109 71 27 
T cell CD8 effector memory 252 223 193 
T cell CD8 naive 183 156 115 
T cell CD8 terminally exhausted 166 131 89 
T cell NK-like 192 163 125 
T cell regulatory 216 192 150 
Transitional club/AT2 193 159 106 



Number of patients with ≥ 5/ ≥10 / ≥ 30 cells 
Cell type 5 10 30 
Tumor cells LUAD 225 192 136 
Tumor cells LUAD EMT 43 26 13 
Tumor cells LUAD mitotic 98 64 23 
Tumor cells LUAD MSLN 6 3 1 
Tumor cells LUAD NE 6 3 3 
Tumor cells LUSC 86 62 36 
Tumor cells LUSC mitotic 79 60 32 
Tumor cells NSCLC mixed 24 19 12 



Table S3: related to Figure 1. Sample disposition. 

Figure Dataset Sample origin 
1A overview 
1B core atlas all 
1C extended atlas all 
1D UKIM-V all 
1E extended atlas all 
1F extended atlas primary tumor 
1G independent Lübeck cohort 
2A extended atlas primary tumor 
2B extended atlas (cancer cells) primary tumor 
2C extended atlas (cancer cells) primary tumor 
3A extended atlas primary tumor 
3B extended atlas primary tumor 
4A-E extended atlas primary tumor 
4F TCGA LUAD/LUSC 
4G extended atlas (CD8+ T cells) primary tumor 
5A-B extended atlas (neutrophils) all 
5C independent FACS cohort 
5D extended atlas (neutrophils) all 
5E extended atlas primary tumor 
5F extended atlas (neutrophils) all 
5G independent FACS cohort 
5H representative imaging of UKIM-V patient 
6A-B extended atlas (neutrophils) all 
6C independent FACS cohort 
6D-E UKIM-V (neutrophils) all 
6F ligands: extended atlas (neutrophils); receptors: extended atlas ligands: all; receptors: primary tumor 
6G extended atlas all 
6H extended atlas (neutrophils) all 
6I-K POPLAR/OAK cohort 
S1A core atlas all 
S1B extended atlas all 
S1C extended atlas primary tumor + adjacent normal 
S1D core atlas (cancer cells) primary tumor 
S1E extended atlas all 
S1F extended atlas all 
S1G independent FACS cohort 
S1H extended atlas all 
S1I extended atlas all 
S1J extended atlas (CD8+ T cells) all 
S1K extended atlas primary tumor 
S2A independent Lübeck cohort 



Figure Dataset Sample origin 
S2B-C independent FACS cohort 
S2D extended atlas primary tumor 
S2E extended atlas primary tumor 
S3A extended atlas primary tumor 
S4A-B extended atlas primary tumor 
S4C independent IF cohort 
S4E-F extended atlas primary tumor 
S4G-H TCGA LUAD/LUSC 
S5A extended atlas (neutrophils) primary tumor 
S5B extended atlas (neutrophils) all 
S5C representative imaging of UKIM-V patient 
S6A-E extended atlas (neutrophils) all 
S6F independent FACS cohort 
S6G-K POPLAR/OAK cohort 
S7A gating strategy 
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Figure S2: related to Figure 2. Immune phenotypes in histological NSCLC subtypes.

(A) Flow cytometry analysis of CD4+ lymphocytes and macrophages as percentage of all cells in LUAD (n=9)

versus LUSC (n=6) tumor samples. The horizontal line represents the median, whiskers extend to the inter-

quartile range (Wilcoxon test, **p<0.01).

(B) Flow cytometry analysis of the T cell-to myeloid cell ratio (T/M ratio) in tumor tissue (T subtype n=6, M

subtype n=4). The horizontal line represents the median, whiskers extend to the inter-quartile range (Wilcoxon

test, *p<0.05).

(C) Fractions of immune phenotypes in histological subtypes.

(D) Differential of DoRothEA transcription factor signatures in cancer cells between the four immune

phenotypes. Heatmap colors indicate the deviation from the overall mean, independent of tumor histology 

and stage. White dots indicate significant interactions at different false-discovery-rate (FDR) thresholds. P-

values have been calculated using a linear model f-test. Only transcription factors with an FDR < 0.1 in at 

least one patient group are shown.
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Figure S3: related to Figure 3. Tumor-immune crosstalk in LUAD vs. LUSC, 

(A) Upper panel: top 30 differentially expressed ligands in LUAD vs. LUSC (DESeq2 on pseudo-bulk, FDR 

<  0.01). Heatmap colors indicate log2 fold changes clipped at ±5, where blue indicates upgregulation in  

LUSC and red indicates upregulation in LUAD. Bottom panel: Respective receptors and the expression by 

cell type. Dot sizes and colors refers to the fraction of cells expressing the receptor and gene expression, 

respectively, averaged over all patients. Dots are only shown for receptors that are expressed in at least 10%

of the respective cell-types.
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Figure S4: related to Figure 4.  Association of cellular composition and distinct genotypes and 
survival in the TCGA data, 
(A-B) SCISSOR analysis showing the association of cellular composition and TP53 mutation in LUAD and 

LUSC derived from the TCGA reference dataset. 

(C) Staining of tumor tissue from LUAD patients with KRAS (n=7), EGFR (n=6) or TP53 (n=5) mutation

compared to LUAD tumor tissue negative for the respective mutation (n=12). Multiplex immunofluoresence

was performed to detect CD4+ T cells, CD8+ T cells, CD20+ B cells, or CD68+ macrophages, respectively.

Positive stained cells per 1000 cells are given. CXCR2 expression was analyzed by immunohistochemistry and

quantified per high power field in patients with EGFR mutation compared to EGFR wt patients. Analyses

related to the corresponding SCISSOR analyses are shown. The horizontal line represents the median, whiskers

extend to the inter-quartile range (Wilcoxon test, ***p<0.001).

(D) Immunohistochemistry staining of neutrophils (ASD+ cells) quantified per high power field in patients

with EGFR mutation (n=11) compared to EGFR wt patients (n=26). The horizontal line represents the median,

whiskers extend to the inter-quartile range (Wilcoxon test, *p<0.05).

(E-F) Association of cellular composition with overall survival for LUSC and LUAD patients.

(G-H) Kaplan-Meyer plot of LUAD and LUSC patients with high (top 25%) and low (bottom 25%) B cell

fractions of TCGA lung cancer patients as determined by deconvolution with EPIC. P-value has been

determined using CoxPH-regression using tumor stage and age as covariates.
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Figure S5: related to Figure 5. Characterization of tissue-resident neutrophils. 

(A) Neutrophil fraction in LUSC vs. LUAD (extended atlas). P-value derived using linear model f-test

including dataset as a covariate.

(B) Expression of top 30 marker genes (AUROC > 0.75) for NANs and TANs. Every dot is the log2 fold

change on a single patient. Bars show the average log2-fold change.

(C) Multiplex immunofluorescence co-staining of CXCR2 (red), LOX-1 (yellow) and pan-cytokeratin

(blue) in LUSC tumor tissue. Scale bar = 100 µm.
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Figure S6: related to Figure 6. Tissue-resident neutrophil subtypes in NSCLC. 
(A) TRN subclusters by the contributing datasets. Left column shows the number of patients with >10

neutrophils in the respective study, the heatmap depicts the number of cells per neutrophil cluster. Data of 43

patients with each > 10 neutrophils.

(B) TAN/NAN candidate marker gene expression by neutrophil subclusters. Expression values are the mean

across pseudobulk samples by patient.

(C) NAN and TAN fractions in LUAD versus LUSC. Each dot refers to a patient with at least 10 neutrophils.

P-values are derived from a t-test and not adjusted for multiple testing. In all boxplots, the central line denotes
the median. Boxes represent the interquartile range (IQR) of the data, whiskers extend to the most extreme
data points within 1.5 times the IQR.

(D) Neutrophils subcluster fractions in LUAD versus LUSC. Each dot refers to a patient with at least 10
neutrophils. P-values are derived from a t-test and not adjusted for multiple testing. In all boxplots, the central
line denotes the median. Boxes represent the interquartile range (IQR) of the data, whiskers extend to the most
extreme data points within 1.5 times the IQR.

(E) Flow cytometry analysis demonstrating the correlation between HLA-DR expression and CD83, LOX-1,
CD181, CD62L or CD16 expression, respectively. Representative analysis of neutrophils derived from
NSCLC normal-adjacent tissue (blue) and tumor tissue (red) are shown.

(F) Kaplan-Meyer plot of LUSC patients form the POPLAR (Fehrenbacher et al., 2016) and OAK
(Rittmeyer et al., 2017) cohorts treated with atezolizumab with high (top 25%) and low (bottom 25%) TRN
signature score. P-value has been determined using CoxPH-regression.

(G) Kaplan-Meyer plot of LUAD patients form the POPLAR (Fehrenbacher et al., 2016) and OAK
(Rittmeyer et al., 2017) cohorts treated with atezolizumab with high (top 25%) and low (bottom 25%) TRN
signature score. P-value has been determined using CoxPH-regression.

(H) Kaplan-Meyer plot comparing patients treated with atezolizumab with high (top 25%) and low
(bottom 25%) NAN signature scores. P-value has been determined using CoxPH-regression including cohort
and histology as covariates.

(I) Kaplan-Meyer plot comparing patients treated with atezolizumab with high (top 25%) and low (bottom
25%) TAN signature scores. P-value has been determined using CoxPH-regression including cohort and
histology as covariates.

(J) Predictive value of cell-type signatures in bulk RNA-seq data from the OAK80 and POPLAR79 cohorts of
NSCLC patients treated with atezolizumab (anti-PD-L1). The bar charts show cell-type signatures that are
associated with worse (log hazard ratio > 0) or better (log hazard ratio < 0) survival at an FDR < 0.1. The
hazard ratio and p-values have been determined using CoxPH regression including cohort and histology as
covariates.



Table S4: related to Figure 6. Genes signatures. 

TRN signature 
(n=38) 

NAN signature 
(n=20)  

TAN signature 
(n=18)  

AGO4 AGO4 CCR3 
ARG1 ARG1 CCRL2 
CCR3 CYP4F3 DDIT3 
CCRL2 ERGIC1 FLOT1 
CYP4F3 FLOT2 HIF1A 
DDIT3 FRAT2 IRAK2 
ERGIC1 LRP10 MAFF 
FLOT1 MGAM MAP1LC3B2 
FLOT2 MMP25 MCOLN1 
FRAT2 MSRB1 NBN 
HIF1A NDEL1 NOD2 
IRAK2 NFE2 PI3 
LRP10 PADI4 PLAU 
MAFF PBX2 PPIF 
MAP1LC3B2 PHOSPHO1 TGM3 
MCOLN1 RASGRP4 TOM1 
MGAM REPS2 UBR5-AS1 
MMP25 SULT1B1 ZNF267 
MSRB1 TSEN34 
NBN XKR8 
NDEL1 
NFE2 
NOD2 
PADI4 
PBX2 
PHOSPHO1 
PI3 
PLAU 
PPIF 
RASGRP4 
REPS2 
SULT1B1 
TGM3 
TOM1 
TSEN34 
UBR5-AS1 
XKR8 
ZNF267 
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Figure S7 related to STAR Methods. Flow cytometry gating strategy to define cell populations from 

NSCLC tumor tissue and normal adjacent tissue.

(A) In initial cleaning steps dead cells, debris and doublets were removed using 7-AAD staining and scatter 

characteristics. Leukocytes were defined by CD45 staining and sequentially gated into subtypes including 

neutrophils, monocytes, T cells and B cells. Non-CD45+ cells were gated into epithelial cells, endothelial 

cells and fibroblasts.



Table S7: related to STAR Methods. Overview of antibody information, imultispectral imaging, 
and mmunohistochemistry.

Antibody cocktails used for flow cytometry: 
Backbone Cell definition Neutrophil Characterization 

Antigen Fluorochrome Antigen Fluorochrome Antigen Fluorochrome 
CD56 BUV395 CD28 BUV615P CD54 FITC 
CD3 BUV496 CD38 BV421 CD83 FITC 
CD8 BUV563 CD123 BV650 CD49b PE 
CD4 BUV737 CD34 FITC CD62L PE 
CD45 BUV805 CD161 PE LOX-1 PE 

HLA-DR BV480 CD193 PE-CF594 CD181 APC 
CD31 BV605 TCRgd PE-Cy5 
CD14 BV711 CD90 APC 
CD15 BV786 
CD326 PE-Cy7 
CD19 APC-R700 
CD16 APC-eF780 

Antibody-antigen retrieval and opal fluorophore pairing related to multispectral imaging: 
Antibody pH (AR) Opal Pairing Clone Provider Dilution 

CXCR2 9 570 EPR22301-103 Abcam 1:500 
LOX-1 9 540 polyclonal Sigma-Aldrich 1:200 
CD16 9 650 EPR22409-124 Abcam 1:600 
CD8 9 570 C8\144B Dako/Agilent 1:200 
CD3 6 620 polyclonal Dako/Agilent 1:250 
CD68 9 650 PG-M1 Dako/Agilent 1:200 
CD20 6 540 L26 Dako/Agilent 1:200 
DAPI 7.4 450 - Akoya Biosciences 1:15 

Cytokeratin 9 450 AE1/AE3 Dako/Agilent 1:500 
Cytokeratin 9 690 C-11 Abcam 1:1000 

Overview of antibodies used for immunohistochemistry: 
Antibody Clone Provider Dilution 

CD4 SP35 Ventana pre-diluted 

CD68 KP1 Ventana pre-diluted 
CXCR2 EPR22301-103 Abcam 1:500 

Table S8: related to STAR methods. Quality control thresholds related to datasets integrated into the 
NSCLC single-cell atlas. 

Dataset min 
counts 

max 
counts 

min 
genes 

max 
genes 

max 
pct_mito 

Adams_Kaminski_2020_COPD 1000 35000 500 10000 20 
Chen_Zhang_2020_NSCLC 600 30000 250 10000 20 



Goveia_Carmeliet_2020_NSCLC 600 30000 250 10000 20 
Guo_Zhang_2018_NSCLC 20000 3000000 1000 20000 20 
Habermann_Kropski_2020_pulmonary-fibrosis 600 30000 200 10000 20 
Kim_Lee_2020_LUAD 1000 35000 300 10000 20 
He_Fan_2021_LUAD 600 30000 250 10000 20 
Lambrechts_2018_LUAD_6149v1 600 30000 200 10000 15 
Lambrechts_2018_LUAD_6149v2 600 30000 250 10000 20 
Lambrechts_2018_LUAD_6653 1200 40000 250 10000 20 
Laughney_Massague_2020_NSCLC 1800 40000 500 10000 20 
Madissoon_Meyer_2020_pulmonary-fibrosis 600 30000 300 10000 20 
Maier_Merad_2020_NSCLC 1000 30000 400 10000 15 
Maynard_Bivona_2020_NSCLC 20000 20000000 600 20000 30 
Mayr_Schiller_2020_pulmonary-fibrosis 600 30000 250 10000 10 
Reyfman_Misharin_2018_pulmonary-fibrosis 1000 30000 250 10000 20 
Travaglini_Krasnow_2020_Lung_10x 1000 30000 500 10000 0 
Travaglini_Krasnow_2020_Lung_SS2 20000 6000000 600 20000 30 
UKIM-V 2000 100000 200 8000 30 
Vieira_Teichmann_2019_asthma 600 30000 200 10000 20 
Wu_Zhou_2021_NSCLC 600 30000 300 10000 30 
Zilionis_Klein_2019_NSCLC 600 30000 200 10000 20 
UKIM-V-2 1000 60000 200 8000 30 
Leader_Merad_2021_10x_3p_v1_sort 600 30000 220 10000 10 
Leader_Merad_2021_10x_3p_v2_beads_cite 600 30000 300 10000 25 
Leader_Merad_2021_10x_3p_v2_beads 1000 30000 500 10000 20 
Leader_Merad_2021_10x_3p_v2_digest-deadcell_cite 1000 30000 500 10000 20 
Leader_Merad_2021_10x_3p_v2_sort 600 30000 250 10000 25 
Leader_Merad_2021_10x_3p_v3_beads 600 30000 250 10000 30 
Leader_Merad_2021_10x_5p_v1_beads 1100 30000 500 10000 25 
Leader_Merad_2021_10x_5p_v1_CD2 1100 30000 500 10000 15 
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