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Abstract
Neuroendocrine tumors (NET) of the lung constitute a rare entity of primary lung malignancies that often exhibit an indolent 
clinical course. Epigenetics-related differences have been described previously for lung NET, but the clinical significance 
remains unclear. In this study, we performed genome-wide methylation analysis using the Infinium MethylationEPIC Bead-
Chip technology on FFPE tissues from lung NET treated at two academic centers. We aimed to investigate the methylation 
profiles of known prognostic subgroups. In total, 54 tissue samples from primary lung NET were analyzed, of which 37 were 
typical carcinoids (TC) and 17 atypical carcinoids (AC). Overall, 25/53 patients (47.2%) developed metastases throughout the 
disease course, 14/26 (53.8%) had a positive somatostatin receptor (SSTR) scan, and 7/28 patients (25.0%) had documented 
endocrine activity. Analysis of the DNA methylation data showed substantial differences between TC and AC samples and 
revealed three distinct clusters (C1–C3): C3 (n = 29) with 100% TC and 89.7% non-metastasized, C2 (n = 22) with 63.6% AC 
and 95.5% metastasized, and C1 with three AC samples (2/3 metastasized). In subgroup analyses, distinct methylation pat-
terns were observed based on histology, metastases, SSTR status, and endocrine activity. In the functional gene classification, 
the genes affected by differential methylation were mainly involved in cell signaling. DNA methylation could potentially aid 
in the diagnostic process of lung NET. The differences in methylation observed with respect to clinical features like SSTR 
expression and endocrine activity could translate into improved management of lung NET.
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Introduction

Neuroendocrine neoplasms (NEN) of the lung comprise a 
spectrum of malignancies that share neuroendocrine fea-
tures in histology but may have a diverse tumor biology, 
ranging from indolent to highly aggressive [1]. The 2022 
WHO classification categorizes pulmonary NEN based on 
differentiation and grade, distinguishing well-differentiated 
neuroendocrine tumors (NET) from poorly-differentiated 

neuroendocrine carcinoma (NEC) like large-cell NEC and 
small-cell lung carcinoma [2]. Lung NET include typical 
carcinoids (TC, < 2 mitoses/2 mm2 and no necrosis) and 
atypical carcinoids (AC, 2–10 mitoses/2 mm2 and/or necro-
sis) and account for 1–2% of all primary lung tumors (AC 
represent only 10% of lung NET) [1, 2].

The clinical presentation of lung NET can be asymp-
tomatic to nonspecific, but a certain subset of patients 
may experience characteristic hormonal symptoms (e.g., 
Cushing’s syndrome or carcinoid syndrome) [3–5]. The 
prognosis is generally favorable, with 10-year disease-
specific survival of about 60% for TC and 20% for AC 
in stage IV [6]. Other known prognostic factors, except 
nodal status and differentiation, are Ki-67 index, age, 
surgery, or radiation of the primary site and SSTR status 
[7–9]. The therapeutic armamentarium for advanced lung 
NET is limited, and everolimus is the only FDA/EMA-
approved compound for antiproliferative use in lung NET 

 *	 Barbara Kiesewetter 
	 barbara.kiesewetter@meduniwien.ac.at

1	 Division of Oncology, Department of Medicine I, Medical 
University of Vienna, Vienna, Austria

2	 Department of Pathology, Medical University of Vienna, 
Vienna, Austria

3	 Diagnostic and Research Institute of Pathology, Medical 
University of Graz, Graz, Austria

http://crossmark.crossref.org/dialog/?doi=10.1007/s12022-025-09847-2&domain=pdf
http://orcid.org/0000-0002-8920-0206
http://orcid.org/0000-0001-9379-6797
http://orcid.org/0000-0003-3541-2315
http://orcid.org/0000-0002-5490-2371


	 Endocrine Pathology            (2025) 36:6     6   Page 2 of 12

to date [10]. According to the current European guidelines, 
further treatment strategies include somatostatin analogs 
(SSA), temozolomide-based chemotherapy, peptide recep-
tor radionuclide therapy (PRRT), platinum-based chemo-
therapy, and interferon-α [10, 11].

Pulmonary carcinoids frequently have mutations in his-
tone-modification and chromatin-remodeling genes, and 
there are distinct differences between carcinoids and carci-
nomas, as MEN1 alterations are exclusive to carcinoids, and 
TP53 and RB1 mutations enriched in carcinomas [12, 13]. 
In terms of epigenetics, two research groups have conducted 
methylation analyses in lung NET, each describing three 
distinct clusters that were enriched for specific pathologic 
features such as MEN1 mutation or a certain histologic sub-
type [14, 15]. Nevertheless, neither study provided substan-
tial clinical or outcome data, so the clinical significance of 
methylation in lung NET remains unclear.

Thus, the main objective of this study was to elucidate the 
potential correlation of clinical characteristics and methyla-
tion patterns in lung NET. To that objective, we have col-
lected a sizeable and clinically well-characterized cohort of 
pulmonary carcinoids from two tertiary referral centers, per-
formed genome-wide methylome profiling of over 850,000 
CpG sites using the Illumina MethylationEPIC BeadChip, 
and then correlated epigenetic results with clinical features, 
i.e., histologic subtype, metastatic disease, SSTR status, and 
endocrine activity.

Methods

Inclusion Criteria and Data Collection

This study included histologically verified lung NET patients 
from two academic centers (Medical University of Vienna and 
Medical University of Graz) who were diagnosed with either 
TC or AC and had sufficient formalin-fixed paraffin-embed-
ded (FFPE) tissue from the primary tumor or metastases 
available for methylation analysis (one sample per patient). 
At both sites, clinical data were collected via retrospective 
chart review, including basic clinical characteristics (sex, 
age, date of diagnosis, and Eastern Cooperative Oncology 
Group (ECOG) status), histologic characteristics (grading, 
Ki-67 index, mitotic count, and SSTR2/5 expression), disease 
characteristics (primary localization, tumor stage, metasta-
ses, endocrine activity, and functional imaging), and treatment 
information (surgery, systemic therapy lines, response, pro-
gression-free survival, overall survival, and death if applica-
ble). This study had received approval by the Ethics Commit-
tee of the Medical University of Vienna (EK no.: 1918/2020).

DNA Extraction from FFPE Tissue

FFPE tissue blocks from selected patients were evaluated by 
NET reference pathologists (P.M., L.B.) based on the cor-
responding hematoxylin–eosin (H&E) staining, and regions 
with the highest tumor cell content were selected. Tumor 
tissues were separated from the block by specific biopsy 
punching needles (Ø 1 mm) or macro-dissection depend-
ing on the presentation of tumor tissue. Genomic DNA was 
isolated using the Maxwell FFPE Plus DNA Kit (Promega, 
Madison, Wisconsin, USA) according to the manufacturer’s 
instruction. The Infinium HD FFPE Restore Kit (Illumina, 
San Diego, California, USA) was used to repair degraded 
DNA to improve downstream amplification. Bisulfite treat-
ment was performed using the EpiTect Fast Bisulfite Conver-
sion Kit (Qiagen, Hilden, Germany). In total, 250–500 ng of 
DNA were used as input.

Methylation Microarray Analyses

To analyze genome-wide methylation, the Infinium Meth-
ylationEPIC BeadChip Kit (Illumina, San Diego, California, 
USA) was used according to the manufacturer’s instructions. 
Briefly, after bisulfite conversion, the DNA was amplified, 
enzymatically fragmented, and hybridized to microarray. 
The washed and stained microarray was analyzed on an 
iScan device (Illumina, San Diego, California, USA) to 
generate raw intensity (.idat) files.

Bioinformatic Data Analysis and Statistics

Raw.idat files were imported into the latest version of 
R software (R Foundation for Statistical Computing, 
Vienna, Austria) for initial quality control and calcula-
tion of differential DNA methylation using the latest ver-
sion of the RnBeads [16] package. Probes overlapping 
with SNPs, cross-reactive probes, and sex chromosome-
specific probes were removed from further analyses. 
Low-quality probes were identified and removed using 
the Greedycut algorithm integrated in RnBeads. Data 
normalization was performed using the SWAN algorithm 
[17]. Hierarchical clustering was calculated based on all 
probes which passed the quality control. Calculation of 
methylation differences between groups was conducted 
using limma [18] as well as by computing a combined 
rank score, which depends on the difference in mean 
methylation levels of two groups, the mean methylation 
quotient and statistical significance. For subsequent anal-
yses, the top 1000 differentially methylated CpG sites 
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Table 1   Patient demographics 
and basic disease characteristics

ECOG, Eastern Cooperative Oncology Group score; SSTR, somatostatin receptor; SSA, somatostatin ana-
logs; PRRT​, peptide receptor radionuclide therapy

Variable Typical carcinoid Atypical carcinoid Cohort overall

Number of patients (%) 37 (68.5%) 17 (31.5%) 54 (100%)
Sex
 Female 25 (67.6%) 10 (58.8%) 35 (64.8%)
 Male 12 (32.4%) 7 (41.2%) 19 (35.2%)
Median age at diagnosis (range) 63 (21–82) 57 (34–76) 61 (21–82)
ECOG
 ECOG 0 13 (35.1%) 10 (58.8%) 23 (42.6%)
 ECOG 1 0 1 (5.9%) 1 (1.9%)
 Not available 24 (64.9%) 6 (35.3%) 30 (55.6%)
Primary tumor location
 Lung 37 (100%) 17 (100%) 54 (100%)
Tumor stage
 Stage 1 29 (78.4%) 2 (11.8%) 31 (57.4%)
 Stage 2 3 (8.1%) 5 (29.4%) 8 (14.8%)
 Other 5 (13.5%) 10 (58.8%) 15 (27.8%)
Ki-67 index
 Median 2 16.5 5
 Not available 14 7 21
Metastasized at initial diagnosis
 Yes 3 (8.1%) 5 (29.4%) 8 (14.8%)
 No 34 (91.9%) 12 (70.6%) 46 (85.2%)
Metastasized at any time during disease
 Yes 9 (24.3%) 16 (94.1%) 25 (48.3%)
 No 27 (73.0%) 1 (5.9%) 28 (51.9%)
 Not available 1 (2.7%) 0 1 (1.9%)
Endocrine activity
 Not available 21 (56.8%) 5 (29.4%) 26 (48.1%)
 No 12 (32.4%) 9 (52.9%) 21 (38.9%)
 Yes 4 (10.8%) 3 (17.6%) 7 (13.0%)
 - Cushing syndrome 3 1 4
 - Carcinoid syndrome 1 1 2
 - Calcitonin-related 0 1 1
SSTR imaging
 Positive 11 (29.7%) 3 (17.6%) 14 (25.9%)
 Mixed 0 6 (35.3%) 6 (11.1%)
 Negative 3 (8.1%) 3 (17.6%) 6 (11.1%)
 Not performed/not available 23 (62.2%) 5 (29.4%) 28 (51.9%)
Treatments (first line)
 Surgery 37 (100%) 13 (76.5%) 50 (92.6%)
 Watch and wait 1 1 2
 SSA 6 3 9
 PRRT​ 3 1 4
 Platin/etoposide 0 8 8
 Everolimus 0 1 1
 Other 0 1 1
Tissue sample origin
 Lung 35 (94.6%) 8 (47.1%) 43 (79.6%)
 Liver 2 (5.4%) 5 (29.4%) 7 (13.0%)
 Ovary 0 1 (5.9%) 1 (1.9%)
 Lymph node 0 1 (5.9%) 1 (1.9%)
 Not available 0 2 (11.8%) 2 (3.7%)
Tissue sample from diagnosis
 Yes 35 (94.6%) 10 (58.8%) 45 (83.3%)
 No 2 (5.4%) 7 (41.2%) 9 (16.7%)
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(DMPs) were selected. Gene Ontology (GO) and KEGG 
pathway enrichment analyses were performed using the 
missMethyl [19] package. Heatmaps were generated using 
the clustvis [20] package. The packages FactoMineR [21], 
factoextra [22], and umap [23] were used for dimensional-
ity reduction analysis.

The clinical data were analyzed with the R programming 
language version 4.3.2. The distribution, central tendency, 
and dispersion of certain variables (categorical and quan-
titative) were analyzed to describe the patient population. 
Hypothesis testing was done with the appropriate statisti-
cal tests (e.g., Fisher’s exact test and log-rank test), and a 
two-tailed p-value below the significance level α = 0.05 
was considered statistically significant. Survival analysis 
was performed with the Kaplan–Meier method using the 
R package ggsurvfit [24]. This study was exploratory and 
hypothesis-generating in nature.

Results

Patient Characteristics

A total of 54 tissue samples from 54 individual patients 
were collected at the Medical University of Vienna 
(n = 28) and at the Medical University of Graz (n = 26), 
comprising TC (n = 37, 68.5%) and AC (n = 17, 31.5%). 
Women were predominant in this cohort (64.8%), and the 
median age at diagnosis was 61 years (range 21–82). Most 
TC were diagnosed as stage 1 (78.4%), whereas most AC 
were stage 2 (29.4%) or higher (p = 0.002), see Table 1. 
Over the course of the disease, 25/53 (47.2%) developed 
metastases (TC vs. AC: p < 0.001), primarily to the liver 
(n = 19), bone (n = 12), brain (n = 7), and lungs (n = 7). 
SSTR imaging showed a positive scan in 14/26 patients 
(53.8%). Endocrine activity was present in 7/28 patients 
(25.0%). All tumors originated from the lung (primary 
lung NET). While most TC tissues (94.6%) were obtained 
from the lung, this was the case in only about half of the 
AC tissues (8/17). In total, 9/54 (16.7%) tissues were not 
from the initial diagnosis but were obtained later during 
the disease course (38–160 months).

In total, 50 patients (92.6%) had primary tumor resec-
tion. Surgery was not curative in 7 patients (for 2 no 
data was available), while 26 were recurrence-free at 
the last follow-up and 15 had a relapse (median time to 
relapse 47.4 months). The median overall survival (OS) 
of the entire patient cohort was 224.1 months (95% CI 
116.9–not calculable) and the 10-year survival probability 
69.0%. There was no difference in OS based on histology 
(median OS for TC not reached versus 161.1 months in 
AC, p = 0.6). Twenty-three patients (42.6%) started sys-
temic therapy, with 5 being treated with adjuvant intent. 
The median progression-free survival (PFS) following sys-
temic first-line therapy in the 18 patients with metastatic 
disease was 18.1 months (95% CI 6.0–27.7 months). The 
median PFS for the specific treatments was 5.4 (platinum/
etoposide), 17.0 (everolimus), 14.5 (PRRT), 17.6 (other), 
and 23.6 months (somatostatin analogs).

DNA Methylation in Typical Versus Atypical Lung 
NET

To characterize differences in the tumor methylomes within 
our lung NET cohort, we employed the Illumina Methylatio-
nEPIC BeadChip microarray technology. After quality con-
trol and probe filtering, 603.109 probes remained for further 
analysis. Differential methylation analyses between typical 
and atypical lung NET revealed substantial differences in 
both hypo- and hypermethylation (see Fig. 1A). These differ-
entially methylated CpG probes (DMPs) were evenly spread 
over the chromosomes and were primarily located in gene 
bodies and in intergenic regions (40% and 35%, respectively, 
see Fig. 1B and C).

Hierarchical cluster analysis of the TC and AC sam-
ples using the topmost 1000 probes (909 hypomethylated 
and 91 hypermethylated in AC) identified three distinct 
subgroups, see Fig. 1D. The largest cluster C3 (right) 
included only typical carcinoids (n = 29, 100%), which 
were almost exclusively non-metastasized (n = 26/29, 
89.7%), whereas cluster 2 (middle) was enriched with 
atypical carcinoids (n = 14/22, 63.6%) and consisted 
entirely of patients with metastatic disease except one 
case (n = 21/22, 95.5%). Based on the dendrogram in 
Fig. 1D, C1 was separated early from the two other clus-
ters, suggesting that these three AC are more dissimilar 
from the C2/C3 tumors (see Discussion).

Furthermore, unsupervised clustering based on total 
variance was conducted using principal component analy-
sis (PCA), see Fig. 1E. PC1 accounted for 53.8% of the 
variation in the data and PC2 for 7%. While TC samples 
clustered more tightly, AC samples showed greater vari-
ation in their methylome data. A similar pattern became 

Fig. 1   DNA methylation analysis of lung NET patients. A Scatter 
plot of differentially methylated CpG sites (DMPs) between typi-
cal carcinoid (TC) and atypical carcinoid (AC). Each dot represents 
a unique CpG site, and the red dots represent DMPs. B Circular 
Manhattan plot of the chromosomal distribution of these DMPs. C 
Genomic locations of DMPs (absolute figures in thousands). D Heat-
map showing the hierarchical clustering based on the top 1000 DMPs 
between patients with TC and AC. E Unsupervised clustering using 
principal component analysis (based on total variance)

◂
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evident in a UMAP (Uniform Manifold Approximation 
and Projection) graph, see Figure S1. Most typical carci-
noids clustered separately from atypical carcinoids in the 
UMAP, indicating that they have a distinct methylation 
pattern.

Potential Prognostic Role of Methylation Clusters

The identified clusters were examined for prognostic differ-
ences in PFS and OS. Only a few patients died during the 
follow-up period (n = 8), with two in the TC group and 6 in 
the AC subset. Hence, no clear OS difference was observed 
between TC and AC, see above. Consequently, the methyla-
tion clusters identified in Fig. 1D did not correspond to a sta-
tistically significant difference in prognosis, even though most 
events (n = 7) were recorded in cluster 2 (primarily atypical 
or metastatic carcinoids), with the median OS durations for 
C1 to C3 being 161.1, 224.1 months, and not reached, respec-
tively, see Figure S2. In terms of therapies, everolimus was 
the most frequently applied drug (n = 10), but the survival 
results are restricted to a low number of patients (C1: n = 2, 

events = 2, median PFS 19.4; C2: n = 8, events = 6; median 
PFS 7.3 months; p = 0.8; C3: n = 0).

Functional Classification of Methylation Differences 
Between TC and AC

For functional characterization of genes affected by dif-
ferential methylation, DMPs located either 1500 bp around 
the transcription start site or in the first exon were sub-
jected to Gene Ontology (GO) enrichment analyses. Fig-
ure 2A shows the GO categories that are most significantly 
enriched. Methylation differences were most significant 
within genes involved in immune response and G protein-
coupled receptor signaling (biological processes, BP), 
signaling receptor activity (molecular functions, MF), 
and cell periphery and plasma membrane (cellular com-
ponents, CC).

Therefore, it was of interest to further analyze the 
G protein-coupled receptor signaling pathway, which 
includes the SSTR encoding genes SSTR1, SSTR2, 
SSTR3, SSTR4, and SSTR5. Between TC and AC, several 

Fig. 2   Functional classification. A Gene Ontology of the differen-
tially methylated genes. FDR, false discovery rate; BP, biological pro-
cess; MF, molecular function; CC, cellular component. B Heatmaps 

showing mean methylation of genes involved in G protein-coupled 
receptor signaling and cell adhesion in typical carcinoid (TC) and 
atypical carcinoid (AC) samples
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genes showed differential methylation in their promoter 
regions (see Fig. 2B); however, SSTR-encoding genes 
were not affected by differential methylation. For the GO 
category cell adhesion, differentially methylated promot-
ers are also shown.

Methylation Profiles According to Other NET 
Characteristics

Metastatic Cohort

Looking only at metastatic lung NET, typical and atypical 
carcinoids clustered separately (7/10 and 13/15 in the two 
clusters, respectively) and showed methylation differences, 
see Figure S3A. Likewise, considering only the TC cohort 
(Figure S3B, clustering based on samples with metasta-
sized at any time point yes versus no), separation of the 
same cases (except one case) allocated to C2 (Fig. 1) was 
found.

SSTR Status

As shown in Fig. 3, methylation patterns of patients 
that were either positive or negative on SSTR imag-
ing varied strongly. The differentially methylated CpG 
sites were regularly spread across the chromosomes and 
mostly located in gene bodies and intergenic regions, 
see Fig.  3B and C. In the cluster analysis using the 
top 1000 DMPs, we found that SSTR-negative tumors 
formed a separate methylation cluster (5/6 patients). 
Concordantly, several cell signaling GO categories were 
most significantly enriched, including G protein-cou-
pled receptor signaling, serotonin receptor signaling, 
molecular transducer activity, and signaling receptor 
activity.

Endocrine Activity

Similarly, methylation differences between tumors with 
versus without endocrine activity are shown in Fig. 4. 
Lung NET with no endocrine activity exhibited hyper-
methylation in the majority of differentially methylated 
CpG sites, while few were hypomethylated, see Fig. 4A. 
The chromosomal distribution and genomic location of 
these CpG sites were similar to previous analyses, see 
Fig. 4B and C. Hierarchical clustering suggested that 
hormonally active tumors have distinct methylation 

profiles, since they formed a distinct cluster (7/8 sam-
ples), see Fig. 4E. As previously, GO terms concerning 
cell signaling were implicated, see Fig. 4D.

Discussion

Lung NET are rare tumors that are often sufficiently treated 
with curative surgery. Even in the metastatic setting, the 
prognosis can be good, particularly for TC. Histology plays 
an important part in determining the individual therapeutic 
approach, but further predictive and prognostic biomarkers 
are necessary. As previous research on DNA methylation 
in lung NET lacked detailed clinical characterization, we 
wanted to assess the DNA methylation profiles of known 
prognostic subgroups, i.e., histologic subtype, metastatic 
disease, SSTR2 status, and endocrine activity. Therefore, 
we collected tissue samples from 54 lung NET patients, with 
two-thirds having TC, half being metastasized, 7/28 having 
endocrine activity (25.0%), and 14/26 being SSTR imaging 
positive (53.8%).

In 2019, two groups published integrative multi-omics 
analyses of lung NET cohorts. Laddha et al. performed 
targeted DNA sequencing on 354 genes (n = 29), mRNA 
sequencing (n = 30), and methylation analysis using a 
450K array (n = 18), and they could identify three distinct 
molecular subtypes based on gene expression, which were 
also consistent with the obtained DNA methylation data 
[14]. While the clinical information was limited to radio-
logical-pathological data, tissues in cluster 1 were shown 
to be predominantly from female patients and were located 
in the peripheral lung, cluster 3 tumors were mainly found 
at an endobronchial location and obtained from younger 
patients, and MEN1 mutations were enriched exclusively 
in cluster 2 [14]. Interestingly, no gene expression differ-
ences were observed between TC versus AC in this study 
[14]. Alcala et al. included 257 lung NEN (81 TC, 35 AC, 
75 LCNEC, and 66 SCLC) in their integrative machine-
learning-based study, using an 850K array for the epig-
enome analysis of 95 samples [15]. Based on Multi-Omics 
Factor Analysis and consensus clustering (transcriptome 
and methylome data), they could identify three clusters 
enriched for distinct tumor subtypes, i.e., one cluster 
included 75% TC, another 54% AC, and the third 92% of 
all LCNEC [15].

In our analysis, we found different methylation patterns 
for specific pathologic characteristics, that is, histologic 
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type and metastatic disease. C3 was 100% TC and about 
90% non-metastatic, whereas C2 consisted of two-thirds 
AC and more than 95% metastasized tumors. Notably, pre-
viously implicated clinical factors (Laddha et al.) [14] such 
as being female (45% in C2 and 79% in C3 of our analysis) 
and young age (< 65 years, 59% versus 66%) did not clearly 
segregate here. MEN1 and other genomic alterations were 
not investigated and cannot be addressed in this study. 
Moreover, as with the results from Alcala et al. [15], there 
was a mixed group of TC and AC, suggesting that DNA 
methylation-based clustering analyses alone might not be 
able to make accurate pathologic diagnoses. Inversely, one 
could also surmise that current pathologic criteria (e.g., 
morphological growth pattern, cytological features, mitotic 
count, and presence of necrosis) [2] are insufficient for 
optimal classification of lung NET, and that DNA meth-
ylation could potentially provide additional information, as 
is the case for the classification of central nervous system 
tumors [25].

The sample NET12 deserves further discussion, as the 
patient had a TC and additionally a pathological diagno-
sis of diffuse idiopathic pulmonary neuroendocrine cell 
hyperplasia (DIPNECH) in the contralateral lung. For-
mally, these are considered preneoplastic changes, but 
they may be difficult to distinguish from metastatic disease 
in case of multiple lesions. In this case, it was initially 
assumed that the patient had pulmonary metastases, so 
treatment with lanreotide was administered. Interestingly, 
the cluster analysis here supports the notion that the TC 
analyzed in this patient is non-metastatic, since it was only 
one of two samples in C3 recorded as having metastatic 
disease, and these multifocal lesions therefore appear to be 
independent. This shows that DNA methylation analyses 
might be able to indicate certain clinical characteristics.

Furthermore, the C1 cluster (n = 3) included the two AC 
cases with the highest Ki-67 index observed in this cohort 
(NET51 and NET20 both had a Ki-67 of 30%), while in 
C2, all AC had a Ki-67 < 21%. These two lung NET sam-
ples seem to resemble the highly proliferating NET G3 
cases of gastroenteropancreatic origin and might relate to 
the recently recognized entity of “carcinoids with elevated 
mitotic counts and/or Ki67 proliferation index” [2] or to 
the discovery of supra-carcinoids (tumors with carcinoid 
morphology but LC-NEC molecular characteristics) in 

the methylation study from Alcala et al. [15]. Therefore, 
introducing a WHO NET G3 category also for lung NET 
might be a solution for the better categorization of these 
cases. Confirming and further characterizing this particu-
lar cluster is of great interest; thus, we aim to collect such 
cases for further investigation.

Given the indolent behavior of many lung carcinoids and 
the curative-intent treatment in the majority of our patients, 
we could not observe any prognostic difference based on 
the DNA methylation clusters. However, histologic type and 
metastatic state are known prognostic factors that translate 
into a survival difference in larger collectives [6].

Moreover, we analyzed DNA methylation patterns 
according to somatostatin receptor (SSTR) imaging sta-
tus. SSTR expression is the main rationale for somatosta-
tin analog treatment in lung NET, and SSTR assessment 
by immunohistochemistry or imaging is recommended 
by guidelines before therapy starts [10]. The expression 
of SSTR and of somatostatin is epigenetically regulated 
[26]. Here, we demonstrated that there are differen-
tially methylated CpG sites between SSTR-positive and 
-negative lung NET. However, in the pathway analy-
sis (Fig. 2B), the promoter regions of the somatostatin 
receptors did not show differential methylation, suggest-
ing that other epigenetic differences between TC and AC 
are involved.

Finally, a certain fraction of lung NET patients show 
specific hormonal syndromes which is estimated at around 
8% for carcinoid syndrome [5] or < 5% for Cushing syn-
drome [27]. Without treatment, mortality can be high in 
functioning NET due to possible complications [28]. In the 
clustering analysis according to endocrine activity, NET 
with endocrine activity got enriched in one of two clusters. 
Methylation analysis could therefore provide an indication 
of patients who should potentially be assessed more closely 
for subclinical endocrine syndromes.

Given the key role of epigenetics in lung NET, epige-
netically active substances could be used in the future; ini-
tial studies are already underway or have been completed 
with mixed results in certain cases [29].

There are, however, several limitations to our analysis. 
First, due to the rarity of lung NET, tissue availability is 
limited, so we could not be too restrictive by excluding 
patients who lacked certain clinical features, and no infor-
mation on RNA sequencing or MEN1 mutation status was 
available. Second, not all tissues included were from the 
initial diagnosis and from the primary tumor in the lung. 
To the best of our knowledge, it is unclear whether meth-
ylation patterns change significantly during the disease 
course and development of metastases.

Fig. 3   DNA methylation differences based on SSTR imaging sta-
tus. A Scatter plot of DMPs between SSTR-positive and -nega-
tive patients. B Chromosomal distribution and C genomic locations 
of these DMPs. D Gene Ontology of genes that showed differential 
methylation. E Hierarchical clustering using the topmost 1000 DMPs

◂
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Taken together, we have assembled one of the largest 
methylation cohorts of lung NET to date in order to inte-
grate biological tumor characteristics with clinical informa-
tion, allowing us to characterize the methylation patterns 
of TC and AC, and to demonstrate methylation differences 
between metastasized versus non-metastasized lung NET 
as well as differences between SSTR imaging positive ver-
sus negative tumors and hormonally active versus inactive 
tumors. Overall, our comprehensive analysis supports that 
methylation profiling is a helpful tool that should be inte-
grated in prospective studies.
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