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KEY PO INTS

� STAT5B but not
STAT5A drives self-
renewal in hematopoi-
etic (HSCs) and leuke-
mic stem cells (LSCs).

� STAT5B-induced self-
renewal in LSCs can be
blocked by interfering
with its downstream
target CD9.

The transcription factors signal transducer and activator of transcription 5A (STAT5A) and
STAT5B are critical in hematopoiesis and leukemia. They are widely believed to have
redundant functions, but we describe a unique role for STAT5B in driving the self-renewal
of hematopoietic and leukemic stem cells (HSCs/LSCs). We find STAT5B to be specifically
activated in HSCs and LSCs, where it induces many genes associated with quiescence and
self-renewal, including the surface marker CD9. Levels of CD9 represent a prognostic
marker for patients with STAT5-driven leukemia, and our findings suggest that anti-CD9
antibodies may be useful in their treatment to target and eliminate LSCs. We show that it
is vital to consider STAT5A and STAT5B as distinct entities in normal and malignant
hematopoiesis.

Introduction
The term signal transducer and activator of transcription 5
(STAT5) defines 2 distinct genes: STAT5A and STAT5B. Their
collective role has been extensively studied in healthy and
malignant hematopoiesis, but there have been few attempts to
distinguish between STAT5A and STAT5B. The 2 transcription
factors share more than 90% homology at the protein level, with
differences mainly in the Src-homology 2 and transactivation
domains, which are required for activation.1 STAT5B appears to
be the dominant protein in lymphoid cells and BCR/ABL-driven
leukemia,2-6 but this finding is usually accounted for by the
higher levels of STAT5B in differentiated hematopoietic cells.
The 2 proteins have similar levels in hematopoietic stem cells
(HSCs),1 and the combined deletion of both STAT5 genes in
murine and human HSCs shows their key role in regulating self-
renewal and quiescence.7-10

Leukemic stem cells (LSCs) are able to self-renew and to cause
relapse in hematopoietic malignancies, so their elimination rep-
resents a major therapeutic goal.11 Hematopoietic malignancies
frequently display enhanced STAT5 signaling, initiated either by
STAT5B gain-of-function (GOF) mutations12-18 or through
upstream oncogenic kinases. In the LSC-dependent diseases
chronic myeloid leukemia (CML), acute myeloid leukemia (AML),
or myeloproliferative neoplasm (MPN), examples include BCR/

ABLp210, FLT3-internal tandem duplications (FLT3-ITD), or
JAK2V617F, where disease development requires STAT5 signal-
ing.19-22 It remains enigmatic why STAT5B and not STAT5A is
mutated and whether the oncogenes activate both.

The tetraspanin CD9 is expressed on HSCs and is a marker for
enhanced repopulation capacity.23 Stem cell–maintaining throm-
bopoietin (TPO) signaling has been linked to elevated levels of
CD9,24 and stem cells of B-lineage precursor acute lymphoblas-
tic leukemia (BCP-ALL) and AML have higher levels of CD9 than
HSCs.25-28 CD9-high AML LSCs represent a subgroup of cells
with the potential to promote tumor growth and to reconstitute
human AML in immunocompromised mice.29 CD9 has been
suggested to be a negative prognostic marker in pediatric BCP-
ALL,30 and it is associated with poor complete remission.27 Con-
flicting results have been reported for AML,26,31 highlighting the
importance of understanding the role of CD9 in leukemia.

We now show that STAT5A and STAT5B have different functions
in both HSCs and LSCs and emphasize the importance of distin-
guishing between the two. STAT5B alone can regulate self-
renewal and quiescence. Using single cell RNA-Seq, we defined
a STAT5B-specific stem cell signature and identified CD9 as a
STAT5B target linked to self-renewal. We also show that CD9 is
a marker for an unfavorable prognosis in FLT3-ITD1 leukemia.
Blocking the elevated CD9 levels in STAT5-driven LSCs (FLT3-
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ITD1, BCR-ABLp2101, and JAK2V617F1) induces cell death and
differentiation while sparing HSCs. We show that the
STAT5B–CD9 axis regulates self-renewal in LSCs suggesting
novel therapeutic opportunities and provide an explanation for
the prevalence of STAT5B GOF mutations in hematopoietic
diseases.

Methods
All critical materials and resources are listed in supplemental
Table 1, available on the Blood Web site.

Primary patient-derived samples
Data of bone marrow (BM) sample donors are listed in supple-
mental Table 2. All patients provided written informed consent.
Biobanking and studies on patient samples were approved by
the Ethics Committee of the Medical University of Vienna (034/
2008 and 1184/2014).

Mice
Stat5a2/2,32 Stat5b2/2,33 cS5Ahi,34 STAT5BN642H,12

JAK2V617F,35,36 vav1-Cre,37 C57BL/6N, Ly5.11 [B6.SJL-Ptprca],
and NSG mice (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ; The Jackson
Laboratory) were bred and maintained under pathogen-free
conditions at the Institute of Pharmacology and Toxicology, Uni-
versity of Veterinary Medicine Vienna, Vienna, Austria. NOG-F
mice (NOD.Cg-Prkdcscid Il2rgtm1Sug/JicTac) were purchased
from Taconic Biosciences. All animal experiments were con-
ducted in 6- to 10-week-old mice. All procedures were
approved by the institutional ethics and animal welfare commit-
tee and the national authority according to §§26ff. of the Animal
Experiment Act, Tierversuchsgesetz 2012-TVG 2012 (BMBWF-
68.205/0106-V/3b/2019; GZ BMWF-68.205/0093-WF/V/3b/2015
[Amendment BMBWF-68.205/0091-V/3b/2019]; GZ BMWF-
68.205/0103-WF/V/3b/2015; and GZ 68.205/0174-V/3b/2018
[Amendment: 2020-0.050.677]).

CD9 blocking experiments: patient samples
Patient-derived BM mononuclear cells were treated with 2 mg/mL
CD9 blocking antibody (aCD9) or immunoglobulin G (IgG) anti-
bodies in liquid culture or serial colony formation assays. A
detailed description can be found in the supplemental Methods.

Statistics
The appropriate statistical method was used based on testing
for normal distribution and homogeneity of variance. Tests were
performed using GraphPad Prism. The statistical test is indicated
in the corresponding figure legend.

Results
Unlike STAT5A, STAT5B is important for the
dormancy of HSCs
We used mice lacking Stat5a32 or Stat5b33 to investigate the
roles of the individual STAT5 proteins. Although BM cellularity
and LSK (Lin2, Sca-11, c-kit1) cell numbers remain unaffected
by comparing the deletion of either gene, HSCs (containing the
most dormant and long-term HSCs) and multipotent progenitor
(MPP) 1 and 5 cells (more cycling and myeloid/lymphoid
prone)38,39 are significantly reduced in Stat5b2/2 mice (Figure
1A-B; supplemental Figure 1A-C). Levels of STAT5A are

unaltered in the absence of STAT5B in HSCs and vice versa,
showing that there are no compensatory regulatory mechanisms
(supplemental Figure 1D).

To determine the individual effects of STAT5A and STAT5B on
the transcriptional profiles of rare HSC subpopulations, we per-
formed droplet-based single cell RNA-Seq (103 Genomics) of
30000 fluorescence-activated cell sorter (FACS)-sorted LSK cells
from wild-type (WT), Stat5a2/2, and Stat5b2/2 mice (Figure 1C).
A Louvain clustering analysis of the integrated data from all cells
identified 15 distinct clusters. We used differential gene expres-
sion analysis to define marker genes for each cluster and anno-
tated the clusters for distinct types of hematopoietic progenitor
cells by manual review of marker genes39-42 (Figure 1D; supple-
mental Figure 1E-G; supplemental Table 3). We validated our
clustering analyses by means of label transfer from an indepen-
dent dataset.43 A total of 90.6% of our cells were classified as
LSK cells, and the cluster annotations were confirmed (supple-
mental Figure 1H-I).

The HSC_1 and HSC_2 clusters are defined by gene signa-
tures reminiscent of the expression profiles of dormant
HSCs (Figure S1J). These clusters are smaller in Stat5b2/2

mice compared with the other genotypes (Figure 1D-E). The
single cell RNA-Seq data reflect the flow cytometry analysis,
confirming that the most dormant HSCs are drastically
reduced in Stat5b2/2 mice. In addition to HSC genes known
to be regulated by STAT5 (Mpl, Cited2, etc),44 we found
that genes39-42 and gene sets45 marking dormant HSCs are
expressed less in Stat5b2/2 HSCs (but not in Stat5a2/2:
some of them were even higher expressed in Stat5a2/2

HSCs; Figure 1F; supplemental Figure 1K).

Consistent with reduced numbers of dormant stem cells,
Stat5b2/2 HSC_1 and HSC_2 clusters show elevated S and G2M
molecular cell cycle scores (supplemental Figure 1L). The ele-
vated cell cycle activity is recapitulated ex vivo in Stat5b-defi-
cient HSCs (Figure 1G-H). The data indicate that Stat5a and
Stat5b have nonredundant functions in HSC dormancy.

STAT5B drives HSC self-renewal
We next investigated the functional consequences of the altera-
tions in Stat5b-deficient HSCs. FACS-sorted Stat5b2/2 LSK cells
proliferate significantly slower than WT and Stat5a2/2 LSK cells
and start to exhaust within 15 days (supplemental Figure 2A).
Single cell assays of HSCs recapitulated the findings: Stat5b2/2

cells have a drastically reduced potential for clonal outgrowth
and LSK cell expansion (Figure 2A-B; supplemental Figure 2B).
Replating assays confirmed the diminished self-renewal potential
of Stat5b-deficient BM cells (supplemental Figure 2C). Con-
versely, retroviral overexpression of Stat5b but not of Stat5a in
FACS-sorted LSK cells confers a growth advantage and allows
the cells to retain the surface markers indicative of HSCs (Figure
2C; supplemental Figure 2D-E).

These findings are fully consistent with the results of in vivo experi-
ments. Stat5b2/2 mice exposed to the chemotherapeutic agent
5-fluoruracil (5-FU) react with a drastic reduction in HSCs and LSK
cells compared with WT and Stat5a2/2 mice (Figure 2D-F; supple-
mental Figure 2F). We also observed increased apoptosis and an
enhanced entry to the cell cycle in Stat5b2/2 HSCs (supplemental
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Figure 1. STAT5B, but not STAT5A, has an important role in HSC dormancy. (A-B) HSC flow cytometry analyses of wt, Stat5a2/2, or Stat5b2/2 BM. (A) Representative
FACS plots showing HSC/multipotent progenitor (MPP)1 (CD1501CD482), MPP2 (CD1501CD481), MPP3/4 (CD1502CD481), and MPP5 (CD1502CD482) cell populations
gated on LSK cells. (B) Relative quantification of HSC, MPP1-5, and LSK cells (n $ 6; mean 6 standard error of the mean [SEM]). HSC subpopulations: HSC (LSK,
CD342CD482CD1501CD1352), MPP1 (LSK, CD341CD482CD1501CD1352), MPP2 (LSK, CD341CD481CD1501CD1352), MPP3 (LSK, CD341CD481CD1502CD1352), and
MPP4 (LSK, CD341CD481CD1502CD1351). (C-F) Single cell RNA-Seq of FACS-sorted LSK cells of WT, Stat5a2/2, or Stat5b2/2 BM (n 5 3 pooled/genotype). (C) Experi-
mental workflow. (D) Force-directed graphs of WT, Stat5a2/2, or Stat5b2/2 LSKs, color code as shown in supplemental Figure 1C. (E) Changes in HSC_1 and HSC_2 cluster
sizes of Stat5a2/2 or Stat5b2/2 relative to WT. (F) Absolute differences in the percentage of cells expressing known genes associated with dormant HSCs39,41-43 in pooled
clusters HSC_1 and HSC_2 of Stat5a2/2 or Stat5b2/2 compared with WT. (G-H) HSC cell cycle analyses of WT, Stat5a2/2, or Stat5b2/2 BM. (G) Representative FACS plots
(KI67/DAPI) of HSC/MPP1 with gating strategy and indicated percentages, and (H) quantification of cell cycle phase distributions of HSC/MPP1 cells (n 5 5; mean 6 SEM).
Levels of significance were calculated using 1-way analysis of variance (ANOVA) (B,H). *P , .05; **P , .01; ***P , .001.
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Figure 2G-I). Additional evidence for the unique role of STAT5B in
stem cell self-renewal comes from serial BM transplantation assays
(Figure 2G). We observed a significantly and gradually decreased
repopulation of Stat5b2/2 HSCs and LSK cells within 4 serial trans-
plantations, whereas Stat5a2/2 cells showed slightly enhanced
numbers of HSCs and LSK cells without reaching statistical signifi-
cance (Figure 2H-I; supplemental Figure 2J). The transplantation
experiments exclude the possibility that the effects of Stat5b dele-
tion are predominantly niche related, thereby confirming that
STAT5B has an intrinsic role as the main driver of HSC self-
renewal.

Selective STAT5B activation drives the self-
renewal of HSCs
Several cytokines mandatory for the maintenance and self-
renewal of HSCs, such as TPO,46,47 induce STAT5 activation by
the JAK-dependent phosphorylation of STAT5A Y694 and/or
STAT5B Y699 (pYSTAT5). Phosphorylation leads to STAT5
dimerization, nuclear translocation, and transcriptional activity.1

We found pYSTAT5 is highest in HSC/MPP1 cells and declining
gradually in MPP2 and MPP3/4 cells (Figure 3A; supplemental
Figure 3A). This pattern is reflected by the expression of proto-
typical STAT5 target genes such as Socs2 and Cish in an
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Figure 2. STAT5B drives HSC self-renewal. (A-B) Single HSC assay using cell surface markers (lineage2 [CD3, CD19, CD11b, Gr-1, Ter-119], c-kit1, Sca-11, CD1501,
CD482). (A) Schematic of single cell in vitro cultures. Single HSC/MPP1 cells of WT, Stat5a2/2, or Stat5b2/2 BM were FACS-sorted into individual wells and assessed for
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gatings and quantification of total LSK cell numbers (n 5 74/genotype, whiskers: Tukey). (C) STAT5A (STAT5A-green fluorescent protein [GFP]) or STAT5B (STAT5B-
GFP) overexpression in LSK cells, EV (empty vector-GFP) was used as control. Competitive growth analyses over 28 days (n 5 5/genotype, mean 6 SEM). (D-F) 5-FU
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independent RNA-Seq dataset of FACS-sorted HSC subpopula-
tions39 (supplemental Figure 3B). Our single cell RNA-Seq data
reveal reduced expression of Socs2 and Cish in Stat5b2/2

HSC_1 and HSC_2 clusters but unaltered levels in Stat5a2/2

compared with WT (Figure 3B).

The findings indicate a reduced level of pYSTAT5 signaling
in the absence of STAT5B and its predominant activation in
HSCs. This prompted us to investigate STAT5A- or STAT5B-
specific activation in various hematopoietic cell types. To
overcome the lack of antibodies specific for tyrosine phos-
phorylated STAT5A or STAT5B, we used intracellular flow
cytometry to determine the levels of pYSTAT5 in WT,
Stat5a2/2 and Stat5b2/2 BM cells on cytokine stimulation.
pYSTAT5 levels are decreased in differentiated lymphoid
and myeloid cells in the absence of STAT5A or STAT5B,
implying that both proteins are tyrosine phosphorylated. In
contrast, the levels of pYSTAT5 in HSC/MPP1 and LSK cells
are significantly reduced only in the absence of Stat5b, indi-
cating that predominantly STAT5B is activated (Figure 3C).
Transgenic mice with a hyperactive STAT5AS710F (cS5Ahi) or
STAT5BN642H mutation give comparable results: elevated
pYSTAT5 levels are prominent in HSCs expressing
STAT5BN642H but not in HSCs with hyperactive STAT5A (Fig-
ure 3D). This finding is accompanied by significantly
increased numbers of HSC/MPP1 cells in STAT5BN642H

mice, consistent with previous work,12 whereas the number
of HSC/MPP1 cells in cS5Ahi mice remains unaltered (sup-
plemental Figure 3C).

To explore the HSC phenotype in more detail, we made use of
a novel stem/progenitor cell line called HPCLSK.48 Despite the
limitation of Lhx2 overexpression, it allows us to study the
cytokine-dependent STAT5 signaling driven by TPO, interleukin
3 (IL-3), erythropoietin (EPO), and granulocyte macrophage
colony-stimulating factor (GM-CSF)1 in a single system. TPO
stimulation induces the almost exclusive presence of STAT5B in
the nucleus (Figure 3E-F; supplemental Figure 3D). Similar
effects are observed on stimulation with EPO or GM-CSF,
whereas stimulation with IL-3 induces the nuclear translocation
of both STAT5A and STAT5B to a comparable extent (supple-
mental Figure 3E-F). In summary, our data are consistent with
the idea that the dominant role of STAT5B in HSC self-renewal
stems from its selective activation in these cells.

Selective STAT5B activation drives
the self-renewal of LSCs
Tyrosine-phosphorylated STAT5B is also essential for the self-
renewal of LSCs. Initial indications came from our analysis of the
serial plating capacity of HPCLSK cells that overexpress hyperac-
tive STAT5BN642H (supplemental Figure 4A). Although HPCLSK

cells exhaust, STAT5BN642H maintain their self-renewal potential
(Figure 4A) and express higher levels of STAT5 target genes
and genes associated with dormancy (supplemental Figure 4B).
As STAT5 transcription factors are crucial in leukemia, we
injected WT, Stat5a2/2, or Stat5b2/2 BCR/ABLp2101 LSK cells
into NSG mice. Mice injected with WT or Stat5a2/2 BCR/
ABLp2101 LSK cells disease, whereas mice injected with Stat5b2/2

BCR/ABLp2101 LSK cells remain healthy for more than 200 days
(Figure 4B). Analysis of mice 12 weeks after primary transplanta-
tion revealed significantly fewer Stat5b2/2 BCR/ABLp2101 LSK

cells (supplemental Figure 4C). Retransplantation experiments
confirmed our observations: whereas WT and Stat5a2/2 BCR/
ABLp2101 cells readily induce leukemia, no signs of disease are
detectable after re-transplantation of Stat5b2/2 BCR/ABLp2101

cells, demonstrating the dominant role of STAT5B in BCR/
ABLp2101 LSK cells (Figure 4B; supplemental Figure 4D).

We used the stem/progenitor cell lines HPC-7 or HPCLSK trans-
formed with BCR/ABLp210, JAK2V617F, or FLT3-ITD (all 3 onco-
genes activate and depend on STAT5) to address whether the
selective activation of STAT5B extends to leukemia. STAT5B, but
not STAT5A, is predominantly present in the nucleus of HPC-7 or
HPCLSK cells transformed with BCR/ABLp210, JAK2V617F, or FLT3-
ITD (Figure 4C). Confirmation comes from human AML and CML
cell lines, as immunoprecipitation of STAT5A or STAT5B and
nuclear fractionation in K562 (BCR/ABLp210), SET2 (JAK2V617F),
and HEL (JAK2V617F) cells verifies the higher levels of pYSTAT5B
than pYSTAT5A (supplemental Figure 4E-F).

CD9 as a marker and target of
pYSTAT5B signaling
AML risk signatures49,50 contain STAT5 target genes, including
SOCS2, indicating that STAT5 signaling has an important role in
aggressive disease subtypes. We confirmed the dominant acti-
vation of STAT5B in leukemic cells bearing BCR/ABLp210,
JAK2V617F, or FLT3-ITD. As STAT5B-dependent genes might
represent druggable targets for leukemia therapy, we investi-
gated them in more detail in our single cell RNA-Seq dataset.
We first defined an enrichment score to describe the most dor-
mant HSCs (top 10%) within each genotype (supplemental Fig-
ure 5A). Differential gene expression analysis between the most
dormant HSCs and the remaining cells in each genotype
allowed for the identification of 35 genes specifically regulated
by STAT5B (down in Stat5b2/2, up in Stat5a2/2; Figure 5A).
These genes are reminiscent of the expression profiles of dor-
mant HSCs (supplemental Figure 5B). We then examined the
influence of the expression levels of these genes on patient sur-
vival in 4 distinct cohorts. Three cohorts contained oncogenic
mutations that signal via STAT5 (STAT5-driven), and a control
cohort (non–STAT5-driven) contained mutations that do not
(Figure 5B). The procedure identified CD9 as the only gene
that significantly correlated negatively with overall survival in
STAT5-driven patient cohorts but lacked any correlation in
non–STAT5-driven patient samples (Figure 5C; supplemental
Figure 5C). In line with other reports,25-28 CD9 is expressed at
higher levels in LSCs than in HSCs (supplemental Figure 5D).
We speculated that STAT5B directly regulates the expression
of CD9. The idea is consistent with an observation in patients
with FLT3- and NPM1-mutated AML: patients with CD9-high
express significantly higher levels of SOCS2 and CISH than
patients with CD9-low (supplemental Figure 5E). Further sup-
port came from the observation that surface levels of CD9 are
reduced in Stat5b2/2 LSK cells but not in the absence of
Stat5a (supplemental Figure 5F).

The high CD9 levels in dormant HSCs decrease with differentia-
tion (supplemental Figure 5G). Chromatin immunoprecipitation-
quantitative polymerase chain reaction shows that STAT5B binds
directly to the Cd9 promoter using Cish and Bcl2-l1 promoters
as controls (Figure 5D; supplemental Figure 5H-J). We substanti-
ated this finding by treating HPCLSK cells with TPO, which
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induces expression of Cd9 (supplemental Figure 5K) and pro-
vokes a pronounced increase in the surface levels of CD9 on ex
vivo LSK cells over a period of 4 days (Figure 5E). The effect is
eliminated in Stat5b2/2 LSK cells (supplemental Figure 5L). Fur-
ther evidence that STAT5B (but not STAT5A) drives the expres-
sion of CD9 stems from the finding of elevated CD91 LSK cells
in STAT5BN642H mice, which is not seen in mice expressing
hyperactive STAT5A (supplemental Figure 5M). Enhanced levels
of CD9 are also detected on oncogene-induced activation of
STAT5B in HPC-7 and HPCLSK cells overexpressing JAK2V617F,
FLT3-ITD, or BCR/ABLp210 (Figure 5F). The data indicate that
CD9 is regulated by STAT5B in response to cytokine-induced or
oncogenic signaling.

CD9 blocking affects STAT5 activation and
impedes self-renewal
We observed that CD9-high FLT3-ITD1 NPM11 human patient
BM cells have higher levels of pYSTAT5 than the CD9-low cells
(Figure 6A), which led us to hypothesize that CD9 interacts and
stabilizes cytokine receptors activating STAT5. CD9 has been
shown to interact with c-kit51 and gp130.52 We thus cultured
BM cells from JAK2V617F MPN mice35,36 in the presence of IgG
or CD9-blocking antibody (aCD9). Already under homeostatic
conditions, aCD9 treatment reduced levels of pYSTAT5. This dif-
ference became even more pronounced after TPO stimulation
(inducing self-renewal46,47) in HSC/MPP1 and LSK cells. In

contrast, CD9 blocking and stimulation with cytokines inducing
proliferation and myelopoiesis resulted in unaltered (EPO) or
even increased pYSTAT5 levels (IL-3, GM-CSF)53-56 (Figure 6B).

We speculated that it might be possible to exploit the difference
in CD9 levels between low-expressing HSCs and high-
expressing LSCs in the therapy of STAT5-driven leukemia. To
provide an initial proof-of-concept, we performed colony forma-
tion and liquid culture assays of BM from JAK2V617F MPN mice
and WT controls in the presence of either IgG or aCD9.
JAK2V617F1 BM cells show elevated levels of surface CD9 (sup-
plemental Figure 6A). Blocking CD9 significantly reduced the
numbers of JAK2V617F1 colonies and LSK cells, whereas WT
remained mainly unaffected (Figure 6C-D; supplemental Figure
6B), with the concomitant loss of c-kit expression and upregula-
tion of the myeloid differentiation marker CD11b (Figures 6E;
supplemental Figure 6C). In liquid culture, aCD9 treatment
increases levels of the apoptotic marker Annexin-V and reduces
LSK and total cell numbers exclusively in JAK2V617F BM (supple-
mental Figure 6D), additionally supported by the use of a sec-
ond CD9 blocking antibody (supplemental Figure 6E). These
data indicate CD9 blockade as a potential strategy to eradicate
STAT5-dependent LSCs.

To compare the effects of CD9 blocking and STAT5 inhibition,
we treated BM cells with aCD9 or the STAT5 inhibitor AC-4-
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130.57 Although it had no effect on the total cell number,
STAT5 inhibition specifically decreased LSK numbers. There was
no increase in the level of Annexin-V on LSK cells, but the levels
of c-kit and CD9 were reduced, similar to the effects of aCD9
treatment (supplemental Figure 6F-I).

CD9 as a therapeutic target for pYSTAT5-
driven leukemia
To test our conclusion that CD9 blockade might represent a
potential therapeutic strategy, we explored the effects of
aCD9 treatment in murine MPN models. We transplanted
JAK2V617F BM (Ly5.21) into NSG mice (Ly5.11) and pre-
treated the cells with IgG or aCD9 for 24 hours. After a via-
bility check, we injected the cells IV and analyzed the
recipients 3 weeks later (supplemental Figure 7A-B). aCD9
pretreatment reduced the spleen size and gave lower

numbers of Ly5.21 JAK2V617F HSCs and total cells (supple-
mental Figure 7C-D). This encouraged us to explore the effi-
cacy of aCD9 in vivo and to investigate potential side
effects on untransformed cells. One week after JAK2V617F

BM transplantation, we treated recipient mice 4 times (at
4-day intervals) with aCD9 or IgG and analyzed them 4
weeks after the last treatment (Figure 7A). Although we saw
no large difference in spleen size and total Ly5.21 cell num-
bers, aCD9 reduced Ly5.21 JAK2V617F HSCs while leaving
Ly5.11 WT HSCs, megakaryocyte progenitors, or B-cell pro-
genitors unimpaired (Figure 7B; supplemental Figure 7E-G),
confirming the increased sensitivity of CD9-high JAK2V617F

HSCs to aCD9 treatment.

Our data in the murine system encouraged us to test the effect
of aCD9 on BM samples from human patients with STAT5-

Figure 5 (continued) histograms of CD9 expression (i) and quantification of CD9 levels of HPCLSK WT (ii) (n 5 3, mean 6 SEM), 1FLT3-ITD, 1BCR/ABLp210 (n 5 3,
6SEM), and HPC-7 WT, FLT3-ITD, or JAK2V617F. Levels of significance were calculated using a log-rank test (C), and an unpaired Student t test in (D). Levels of significance
were calculated using the Friedman test (E). *P , .05.
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Figure 7. CD9 as a therapeutic target for pYSTAT5-driven leukemia. (A-B) JAK2V617F transplantation with aCD9 in vivo treatment. (A) Experimental workflow. (B)
Log2 fold changes (aCD9 vs IgG) of HSC subpopulations and total BM cell numbers of (i) Ly5.21 JAK2V617F donors or (ii) Ly5.11 WT NSG recipients (n 5 4 per
treatment, mean 6 SEM, 43 1.25 mg/kg IV IgG or aCD9 were applied). (C) Analysis of CD9 expression in CD341CD382 cells of (i) MPNJAK2V617F1 (n 5 4) and
(ii) CMLBCR/ABL11 (n 5 6) patient and control (n 5 4) BM. (D-E) In vitro treatment of control and patient BM cells either treated with IgG or aCD9 (2 mg/mL). XY plots
showing CD9 levels and (D) CD341CD382 cell numbers or (E) Annexin-V levels of control (n 5 4) and (i) MPNJAK2V617F1 (n 5 3) or (ii) CMLBCR/ABL11 patient BM
mononuclear cells (n 5 6). (F) Serial plating assays of CMLBCR/ABL11 patient (n 5 6) BM either treated with IgG or aCD9. Fold changes of aCD9/IgG colony numbers in
the first and second plating. (G) Serial plating assays of MPNJAK2V617F1 patient (n 5 5) BM either treated with IgG or aCD9. Fold changes of aCD9/IgG colony numbers
in the first and second plating. Levels of significance were calculated using an unpaired Student t test (C), and a paired Student t test (F-G). Levels of significance and
correlation were calculated using Pearson in panels D-E. *P , .05; ***P , .001.
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driven leukemia (AMLFLT3-ITD1, MPNJAK2V617F1, CMLBCR/ABL11;
supplemental Table 2). CD341CD382 cells of all BM samples
with pYSTAT5-activating mutations display elevated surface lev-
els of CD9 (Figure 7C; supplemental Figure 7H). We first deter-
mined the aCD9 concentration that is nontoxic for control
human patient samples (2 mg/mL) by treating liquid cultures and
colony formation assays with either aCD9 or IgG and analyzing
total and CD341CD382 cell numbers (supplemental Figure 7I).
Blocking CD9 (but not IgG treatment) efficiently reduces the via-
bility of CD341CD382 patient cells, with the greatest effect in
samples with high surface levels of CD9. Treatment of CD9-high
patient samples gives a drastic reduction in the numbers of liv-
ing and CD341CD382 cells and an increase in apoptosis while
having almost no effect on CD9-low controls (Figure 7D-E; sup-
plemental Figure 7J-K). The reduction in CD341CD382 cells is
paralleled by a decrease in CD451 cell number and levels of
CD34 and an increase in levels of CD11b, suggesting myeloid
differentiation (supplemental Figure 7L-N). We substantiated the
observations in serial plating assays of BM samples from patients
with CMLBCR/ABL11 and MPNJAK2V617F1 in the presence of either
aCD9 or IgG. aCD9-treated CMLBCR/ABL11 patient BM cells
show a pronounced reduction of colony formation with reduced
CD341CD382 cell numbers after the secondary plating (Figure
7F; supplemental Figure 7O-P). Similarly, aCD9-treated
MPNJAK2V617F1 BM cells show reduced colony numbers in the
secondary plating (Figure 7G; supplemental Figure 7Q-R). The
findings support that blocking CD9 induces exhaustion, differen-
tiation, and apoptosis in STAT5B-driven LSCs, both in our
murine models and in samples from human patients.

Discussion
STAT5 has a critical role in the maintenance and self-renewal of
HSCs and in leukemia.1,7-10 We now show that STAT5A and
STAT5B have distinct functions in HSCs and in LSCs and define
STAT5B as the driving force behind the maintenance and self-
renewal of these cell types. We identify CD9 as a novel STAT5B
target gene and show that the levels of CD9 correlate positively
with STAT5 phosphorylation and negatively with the survival of
patients with FLT3-ITD1 AML. The elevated CD9 surface levels
on LSCs render the cells particularly sensitive toward CD9 block-
ing, which we show to induce differentiation and apoptosis. We
suggest that CD9 levels may have a prognostic value in STAT5-
dependent leukemia. Our results also provide initial indications
that anti-CD9 therapy might represent a novel possibility to treat
patients with STAT5B-dependent myeloid leukemia.

This suggestion is consistent with a preclinical dataset that
included few cases of BCP-ALL.30 Our data are consistent
with the idea that aCD9 treatment may be useful in a range
of STAT5B-driven diseases, including AMLFLT3-ITD1,
MPNJAK2V617F1, and CMLBCR/ABL11. CD9 blocking would prefer-
entially target LSCs, which have higher levels of CD9 than HSCs,
providing a possible therapeutic window that would allow LSCs
to be eliminated while leaving steady-state hematopoiesis unaf-
fected. The fact that Cd92/2 mice lack any hematopoietic
defect58 supports the use of aCD9 in treatment. However, other
CD9-expressing hematopoietic cells may react toward aCD9
treatment. This possibility will require a detailed assessment in
clinical studies. In primary CD341CD382 patient cells with high
levels of CD9, aCD9 induces differentiation, apoptosis, or loss of
self-renewal, reminiscent of the phenotype of Stat5b-deficient

HSCs and LSCs. Our in vivo data are consistent with this inter-
pretation, although the effects are somewhat below statistical
significance. Nevertheless, it is attractive to speculate that the
effect of CD9 inhibition stems from interference with receptor-
dependent signaling. CD9 directly interacts with the cytokine
receptor gp130 in glioma stem cells, enhancing STAT3 activa-
tion.52 As other members of the tetraspanin family, CD9 inter-
acts with c-kit,51,58 which may contribute to the differentiation
induced by its blocking. Selective STAT5B activation (which stim-
ulates CD9 transcription) by TPO drives self-renewal, so it is
likely that CD9 also interacts with the thrombopoietin receptor.
We provide initial indications that anti-CD9 treatment causes
reduced TPO signaling, thereby abrogating STAT5B-dependent
self-renewal and leading to differentiation.

CD9 has been proposed as a prognostic marker for patients
with AML. AML represents a particularly heterogeneous disease
and the levels of CD9 have been tentatively correlated with a
poor31 or a favorable26 prognosis. Our findings suggest that the
prognostic value of CD9 is linked to STAT5B activation, sup-
ported by high expression of STAT5 target genes in aggressive
myeloid leukemia.49,50 In line, patients with STAT5B-dependent
AML with high CD9 levels have a much poorer prognosis than
patients with STAT5B-independent disease. It is important to
note that we discovered the role of CD9 in a cohort of patients
with myeloid leukemia expressing STAT5B-activating onco-
genes, so the STAT5B–CD9 axis may only be important in mye-
loid leukemia. There are indications that STAT5B does not
signal via TPO and CD9 in lymphoid leukemia, which is thought
to be maintained without the involvement of stem cells.59,60 The
lack of this signaling cascade in lymphoid leukemic cells may be
overcome by STAT5B GOF mutations driving self-renewal in
these neoplasms.

The high levels of pYSTAT5 in dormant HSCs indicate that
STAT5 is involved in self-renewal and quiescence. In HSCs, TPO
activates STAT5B but not STAT5A, causing STAT5B to be phos-
phorylated and translocated into the nucleus explaining the
Stat5b2/2 phenotype. The selective activation of STAT5B is spe-
cific to HSCs: TPO stimulation increases the levels of both pYS-
TAT5A and pYSTAT5B in megakaryocytes. The specificity for
STAT5B activation in HSCs may arise from STAT5A-specific neg-
ative regulators, selective receptor docking, distinct posttransla-
tional modifications, and/or individual interactions with proteins
that permit translocation.

STAT5A and STAT5B are widely believed to have redundant
roles in the hematopoietic system, with STAT5B generally con-
sidered dominant as it is present in higher concentrations.1

HSCs represent an exception as they have similar levels of
STAT5A and STAT5B, enabling us to examine the functions of
the 2 molecules in a single cell. We find different transcriptional
signatures of STAT5A and STAT5B in these cells, with STAT5B
apparently selectively involved in activating a range of
“quiescence” genes (although it is not clear whether STAT5A
and STAT5B have the same or different DNA binding sites). We
here present the first conclusive demonstration that the 2 STAT5
proteins have distinct functions. Although both STAT5A and
STAT5B signal to cause proliferation and survival, STAT5B but
not STAT5A is able to drive self-renewal. It is attractive to postu-
late that the other protein (STAT5A) drives differentiation. The
surprising dichotomy of function may be unique to stem cells,
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which are unlike all other hematopoietic cells in that they can
either self-renew or differentiate.

The selective activation of STAT5B adds an additional layer of
complexity to our understanding of canonical JAK/STAT signal-
ing. We highlight STAT5B as a major player in HSCs and LSCs
and define a STAT5B-dependent LSC marker (CD9) for progno-
sis and potential therapy. Our finding that STAT5B, and not
STAT5A, drives self-renewal explains why STAT5B is preferen-
tially activated downstream of several oncogenes and accounts
for the frequency of GOF mutations in STAT5B, but not
STAT5A, in hematopoietic malignancies. Our results emphasize
the need to consider STAT5A and STAT5B individually in hema-
topoietic malignancies.
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