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• Comparative
transcriptomics and
genome-wide CRISPR
screens identify
conserved
transcriptional
programs and
dependencies in
EVI1-driven AML.

• ERG is the key
transcriptional target
of EVI1 that is
required and sufficient
for maintaining
an immature
differentiation state.
Chromosomal rearrangements involving the MDS1 and EVI1 complex locus (MECOM) on
chromosome 3q26 define an aggressive subtype of acute myeloid leukemia (AML) that is
associated with chemotherapy resistance and dismal prognosis. Established treatment
regimens commonly fail in these patients, therefore, there is an urgent need for new
therapeutic concepts that will require a better understanding of the molecular and cellular
functions of the ecotropic viral integration site 1 (EVI1) oncogene. To characterize gene
regulatory functions of EVI1 and associated dependencies in AML, we developed experi-
mentally tractable human and murine disease models, investigated the transcriptional
consequences of EVI1 withdrawal in vitro and in vivo, and performed the first genome-wide
CRISPR screens in EVI1-dependent AML. By integrating conserved transcriptional targets
with genetic dependency data, we identified and characterized the ETS transcription factor
ERG as a direct transcriptional target of EVI1 that is aberrantly expressed and selectively
required in both human and murine EVI1–driven AML. EVI1 controls the expression of ERG
and occupies a conserved intragenic enhancer region in AML cell lines and samples
from patients with primary AML. Suppression of ERG induces terminal differentiation of
EVI1-driven AML cells, whereas ectopic expression of ERG abrogates their dependence on
EVI1, indicating that the major oncogenic functions of EVI1 are mediated through aberrant transcriptional activation of
ERG. Interfering with this regulatory axis may provide entry points for the development of rational targeted therapies.
Introduction
Chromosomal rearrangements leading to overexpression of EVI1
(MECOM) on chromosome 3q26 define a subtype of acute
myeloid leukemia (AML) that is associated with chemoresistance
and a 2-year survival of <10%.1-3 Originally identified as common
insertion site in retrovirally induced murine leukemias,4 the
MECOM locus encodes multiple isoforms of the ecotropic viral
integration site 1 (EVI1) transcription factor.5 In normal hemato-
poiesis, expression of EVI1 is restricted to hematopoietic stem
cells (HSCs) and is critically required for maintaining a self-
renewing, undifferentiated state.6,7 In AML, chromosomal rear-
rangements such as inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2)
juxtapose a distal GATA2 enhancer with the EVI1 promoter8-10

that drives aberrant expression of EVI1 through recruitment of
hematopoietic transcription factors such as MYB, C/EBPα, and
RUNX1.11,12 Other translocations such as t(3;21)(q26;q22) lead
to the expression of RUNX1-EVI1 fusion proteins, whereas
t(3;8)(q26;q24) hijacks a MYC super-enhancer to drive aberrant
EVI1 expression.13 Overexpression of EVI1 is also observed in the
absence of structural rearrangements in certain AML subtypes,
where it is similarly associated with poor prognosis.14-16

Although genetic events and gene regulatory mechanisms
driving aberrant expression of EVI1 are increasingly well char-
acterized, its molecular functions and downstream targets
remain incompletely understood. The EVI1 protein contains 2
clusters of zinc finger domains that are separated by a repres-
sive domain that harbors binding sites for corepressors, such as
the C-terminal binding protein 1/2 (CTBP1/2).17,18 EVI1 is
thought to control lineage-defining transcription factors in
myelopoiesis such as PU.1 and C/EBPα.19,20 In addition, EVI1
has recently been shown to attenuate p53-mediated stress
responses and thereby promote therapy resistance.21 However,
owing to a lack of suitable experimental models, the precise
makeup of EVI1-controlled transcriptional programs and their
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functional contribution to leukemogenesis have remained
largely elusive. Using a panel of tetracycline-mediated condi-
tional disease models that recapitulate the phenotypic and
transcriptional hallmarks of EVI1-driven AML, we have charac-
terized EVI1-dependent transcriptional programs and per-
formed a first panel of genome-wide CRISPR screens that
uncover critical downstream targets and dependencies in EVI1-
driven AML. We identify the ETS transcription factor, ERG, as a
conserved transcriptional target of EVI1 that mediates stem
cell–like transcriptional programs and is critically required for
maintaining an immature cell state in EVI1-driven AML.

Methods
Statistics
For CRISPR screens, Gene Ontology (GO) term analyses, RNA
sequencing (RNA-seq), assay for transposase-accessible chro-
matin using sequencing (ATAC-seq), chromatin immunopre-
cipitation DNA sequencing (ChIP-seq) and gene set enrichment
analyses published statistical packages were used as referenced
in the respective methods sections. For Pearson correlation
of ERG vs EVI1 expression values in patients with AML, the
cor.test() function of the stats (version 4.2.0) R package was
used. For Kaplan-Meier analyses, log-rank test was used. For
single group comparisons of normalized gene expression
values, mean fluorescence intensity and surface marker
expression, 2-tailed Student t test was used for P value deter-
mination. *P < .05, **P < .01, ***P < .001, ****P < .0001.

Patient material
Samples were collected from the Erasmus Medical Center
Hematology Department biobank (Rotterdam, The Netherlands).
Leukemic blasts were purified from bone marrow (BM) or blood
by standard diagnostic procedures. Patient provided written
informed consent in accordance with the Declaration of Helsinki.
The medical ethical committee of the Erasmus Medical Center
approved usage of the patient material for this study.

All other methods are described in detail in the supplemental
Methods (available on the Blood website).

Results
Genome-wide CRISPR screen in human
EVI1–dependent AML cells
To characterize disease-relevant targets of EVI1, we reasoned that
a suitable cell line model should harbor a chromosome 3 rear-
rangement, aberrantly express and strictly depend on EVI1,
parameters that can be assessed through genomic profiling
and functional genetic screening data that are available for hun-
dreds of humancell lines.22-29 Among121hematopoietic cell lines
that have been interrogated using CRISPR/CRISPR-associated
protein 9 (Cas9)– or RNA interference (RNAi)–based screens, we
identified 20 EVI1-expressing cell lines (supplemental Figure 1A).
To our surprise, EVI1was not identified as an essential gene in any
CRISPR screen, whereas RNAi screens revealed HNT-34 as the
only cell line that depends onEVI1 (Figure 1A-B). To validate these
findings, we transduced HNT-34 and 4 additional AML cell lines
(KASUMI-3, MOLM-1, TF-1, HEL) that are commonly used as
models for EVI1-driven AML10,30-32 with EVI1-targeting shRNAs
(supplemental Figure 1B-H). Although knockdown of MYC was
454 2 FEBRUARY 2023 | VOLUME 141, NUMBER 5
detrimental in all tested AML cell lines, knockdown of EVI1
strongly impaired proliferation only in HNT-34 cells (Figure 1C;
supplemental Figure 1D-E), indicating that HNT-34 cells are
uniquely suited for exploring transcriptional and genetic deter-
minants in EVI1-dependent AML.

The HNT-34 cell line is composed of immature, CD34-
expressing blasts that harbor 2 chromosomal translocations:
t(3;3)(q21;q26) leading to a rearranged GATA2 enhancer
driving aberrant EVI1 expression and t(9;22)(q34;q11) that
causes expression of the BCR/ABL1 fusion protein and was very
likely acquired as a secondary event during disease progres-
sion.33 We transduced HNT-34 cells with vectors enabling Dox-
inducible expression of Cas9 (iCas9),34 isolated single-cell–
derived clones, validated tightly Dox-controllable and efficient
genome editing, and confirmed the strong dependency of
HNT-34 cells on EVI1 (supplemental Figure 2A-F). To identify
selective dependencies in EVI1-driven AML, we performed
parallel genome-wide CRISPR/Cas9 screens in HNT-34 and 2
MLL/AF9-driven AML cell lines (MOLM-13, THP-1) that are not
addicted to EVI1 (supplemental Table 1). iCas9-expressing
HNT-34, MOLM-13, and THP-1 cells were transduced with the
Vienna single guide RNA (sgRNA) library,35 and changes in
sgRNA representation were measured after 14 population
doublings. To benchmark the performance of our screening
system, we compared dropout effects of core essential genes in
iCas9 MOLM-13 cells to 3 published screens in the same cell
line (supplemental Figure 2G)23,25,26 and found that the median
effect size was between 15- and 49-fold higher in our analysis
(Figure 1D; supplemental Figure 2H). To leverage this high
dynamic range for the identification of context-specific
dependencies, we compared screening results in HNT-34 and
MOLM-13 cells. Among 578 genes that were strongly depleted
in MOLM-13 but not in HNT-34 cells, we identified several
known cofactors and mediators of MLL fusion-driven leukemo-
genesis, such asMEN1, ZFP64, SIK3, and CEBPA,36-39 as well as
FLT3, a known driver in MOLM-13 cells.40 Conversely, 124
genes were selectively required in HNT-34 but not in MOLM-13
cells, including EVI1, both components of BCR/ABL1, and
GATA2 (Figure 1E). In GO analysis, HNT-34–specific depen-
dencies were enriched for genes involved in stem cell differ-
entiation, hematopoiesis, and cell cycle regulation, whereas
MOLM-13 cells displayed unique vulnerabilities in genes
involved in translational elongation, histone acetylation, and
nucleosome organization (Figure 1E-F).

Because HNT-34 cells represent the only EVI1-dependent
AML cell line that has been interrogated in genome-wide
CRISPR screens, we reasoned that comparing our results to
available genome-wide screens in other AML cell lines could
help to further delineate EVI1-specific dependencies. Indeed,
many genes that were selectively required in HNT-34 cells in
comparison to MOLM-13 cells also showed no depletion in
THP-1 and a broader panel of AML cell lines (supplemental
Figure 2I-J). These putative EVI1-specific dependencies
included several factors involved in stem cell biology, such
as ERG, ETV6, and the EVI1 interactor CTBP2.17,18,41-43

Together, these functional analyses show that HNT-34 cells
recapitulate principal EVI1-associated dependencies and thus
can be used to investigate its regulatory functions and associated
vulnerabilities.
SCHMOELLERL et al
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Figure 1. Identification of human EVI1–dependent AML cell lines. (A) Reanalysis of CRISPR-based loss-of-function screens of 102 hematopoietic cell lines. Each dot
represents a distinct screen. Gene effects were normalized to false discovery rate (FDR)–adjusted median effects size of defined core essential and nonessential genes.
(B) Reanalysis of RNAi-based loss-of-function screens of 61 hematopoietic cell lines retrieved from the Cancer Dependency Map (depmap.org). Each dot represents a distinct
screen. Gene effects are normalized using DEMETER2.29 (C) Competitive proliferation assay in human AML cell lines. Illustrated as color-coded percentage of dsRed–positive
cells expressing indicated short hairpin RNAs (shRNAs) over 18 days. The nontargeting shRNA Ren.713 is used as negative control and the MYC-targeting shRNA as positive
control. Results are normalized to day 8 after transduction and are shown as the mean of 3 biological replicates. (D) Comparative analysis of 2 CRISPR-based loss-of-function
screens in MOLM-13 cells using the data set of this study (Institute of Molecular Pathology [IMP]) and the publicly available Avana data set.26 Gray dots represent all genes.
Axis shows enrichment/depletion as log2 fold change (FC). Orange dots represent genes defined as core essential, whereas dark gray dots represent nonessential genes.
Dashed lines indicate median log2-fold depletion of core essential genes. (E) Comparative analysis of CRISPR-based loss-of-function screens of HNT-34 vs MOLM-13 cells.
Red dots represent genes that selectively impair HNT-34 cells upon knockout (log2 FC in HNT-34 < −2, at least 2 log2 difference compared with MOLM-13 and log2 FC in
MOLM-13 > −2.5). Blue dots represent genes that selectively impair MOLM-13 cells upon knockout (log2 FC < −2 in MOLM-13, at least 2 log2 difference compared with HNT-
34, and log2 FC in HNT-34 > −2.5). (F) GO term analysis of genes with selective effects within HNT-34 compared with MOLM-13.
Mouse models recapitulate human
EVI1–driven AML
Because human cell lines are prone to artifacts and unsuitable for
studying gene functions in vivo, we sought to complement our
analyses in HNT-34 cells with studies in a genetically engineered
mouse model of EVI1-driven AML. Overexpression of EVI1 or
RUNX1/EVI1 in murine hematopoietic stem and progenitor cells
(mHSPCs) induces myelodysplasia in syngeneic recipient mice
that can progress to bona fide AML with long latencies,44-46

suggesting that additional driver events are required. Because
EVI1 DRIVES AML THROUGH ABERRANT ERG ACTIVATION
human EVI1–rearranged AML most commonly harbor mutations
in RAS signaling components, we sought to combine a RUNX1/
EVI1 fusion gene46 with oncogenic NrasG12D, which is known to
cooperate with Evi1 and other oncogenic fusion proteins in
murine leukemogenesis.47-49 To be able to suppress RUNX1/
EVI1 in established AML in vivo, we adapted a Dox-repressible
(Tet-OFF) expression system48 that is based on 2 retroviral con-
structs, one encoding RUNX1/EVI1 and GFP under the control of
a tetracycline-responsive promoter (TRE3G) and the other
delivering constitutively expressed NrasG12D, luciferase, and the
tetracycline transactivator (tTA) (Figure 2A). Syngeneic recipient
2 FEBRUARY 2023 | VOLUME 141, NUMBER 5 455
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Figure 2. Development of preclinical models of EVI1-rearranged AML. (A) Schematic outline of the generation of a transplantation-based RUNX1/EVI1-driven mouse
model allowing controllable oncogene expression. (B) Kaplan-Meier survival analysis of mice transplanted with mHSPCs expressing NrasG12D combined with either vector
control or RUNX1/EVI1 (n ≥ 5). (C) Bioluminescence imaging of mice transplanted with RUNX1/EVI1-expressing leukemia cells that received either Dox treatment (4 mg/mL) or
regular drinking water. (D) Kaplan-Meier survival analysis of mice transplanted with RUNX1/EVI1-expressing leukemia cells that received Dox treatment (4 mg/mL) compared
with untreated controls (n = 5). (E) Flow cytometric analyses of BM-derived leukemia cells of mice transplanted with RUNX1/EVI1-expressing leukemia cells that received Dox
treatment (4 mg/mL) compared with untreated controls. Relative amounts of GFP+CD45.2+ donor cells were quantified and further characterized toward their immuno-
phenotype. (F) BM cytospins of mice transplanted with RUNX1/EVI1-expressing leukemia cells at indicated time points upon Dox treatment (4 mg/mL) compared with
untreated controls. (G) Principal component analysis of the gene expression of human EVI1-expressing AML cell lines (n = 7), human patients with AML harboring EVI1
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mice of mHSPC cotransduced with both vectors developed an
AML-like disease with a mean survival of 116 days (Figure 2B).
The BM of diseased animals was dominated by immature GFP+

blasts expressing high levels of the HSC markers CD150 and
c-Kit, but it also contained more differentiated GFP+ cells coex-
pressing myeloid markers (supplemental Figure 3A).

The RUNX1/EVI1;NrasG12D
–induced leukemias were transplant-

able into secondary recipients and remained highly dependent
on RUNX1/EVI1 expression. Withdrawal of the fusion protein led
to disease regression that was stable even after discontinuing
Dox, and none of the Dox-treated animals succumbed to leu-
kemia over an observation period of 468 days (Figure 2C-D).
Upon Dox treatment, GFP+ RUNX1/EVI1 leukemia cells gradually
lost surface expression of CD150 and c-Kit and differentiated
into Mac-1/Gr-1–expressing myeloid cells (Figure 2E-F). These
effects were not observed when RUNX1/EVI1 was expressed
from a constitutive promoter in an otherwise identical model
(supplemental Figure 3B), demonstrating that leukemia regres-
sion was caused by loss of RUNX1/EVI1 and not by unrelated
Dox effects.50 Interestingly, at an early time point (4 days of Dox
treatment), we observed a transient increase in leukemia burden
(Figure 2C), suggesting that withdrawal of RUNX1/EVI1 initially
enhances cell proliferation. To investigate this further, we
determined the cell cycle state of leukemia cells after 3 and 5
days of Dox treatment using 5-bromo-2′-deoxyuridine (BrdU)/
7AAD labeling in vivo (supplemental Figure 4A). Indeed, Dox-
treated leukemia cells showed an increase in BrdU incorpora-
tion and a higher fraction of cells in S-phase (supplemental
Figure 4B-E), suggesting that RUNX1/EVI1 withdrawal releases
slowly cycling blasts into a differentiation program that initially
involves a transient amplification of myeloid progenitors, remi-
niscent of early steps during myeloid differentiation.51,52

To investigate whether typical transcriptional states of human
EVI1–driven AML are recapitulated in our RUNX1/EVI1;NrasG12D–
driven mouse model, we analyzed the transcriptomes of ex vivo–
isolated leukemia cells by messenger RNA (mRNA) sequencing
and compared them to RNA-seq profiles of EVI1-rearranged
human AML cell lines and primary patient samples.10,53-57 Among
AML cell lines, only HNT-34 and HEL cells clustered closely
together with RNA-seq profiles from samples from patient with
primary EVI1–rearranged AML in principal component analyses,
whereas other EVI1-expressing AML cell lines had substantially
deviated in their transcriptional state (Figure 2G). By contrast,
RUNX1/EVI1;NrasG12D–driven AML mouse models closely resem-
bled transcriptional states of EVI1-rearranged AML in patients
and thus provide suitable models for studying this disease.

To enable functional genetic studies using Dox-inducible
RNAi or CRISPR/Cas9, we generated a version of our mouse
model that coexpresses a reverse tTA 3 (rtTA3) (supplemental
Figure 3C). Disease phenotypes precisely mirrored other
RUNX1/EVI1;NrasG12D–AML models (supplemental Figure 3D-E),
and we were able to expand leukemia cells in culture, where they
retained their immature phenotype and dependence on RUNX1/
EVI1 (supplemental Figure 3F-G).

EVI1 regulates a conserved set of transcriptional
targets in human and murine AML
To characterize gene regulatory functions of EVI1 in vivo,
we transplanted leukemia cells driven by Dox-repressible
EVI1 DRIVES AML THROUGH ABERRANT ERG ACTIVATION
RUNX1/EVI1 and NrasG12D into secondary recipients and pro-
filed the transcriptome in steady state and upon Dox-mediated
repression of RUNX1/EVI1 (Figure 3A). Dox treatment strongly
suppressed the expression of RUNX1/EVI1 and GFP, whereas
NrasG12D was unaffected (supplemental Figure 5A). Overall,
suppression of RUNX1/EVI1 in vivo resulted in 942 down-
regulated and 915 upregulated genes (supplemental Figure 5B),
whereas Dox treatment of the constitutive RUNX1/EVI1;
NrasG12D

–driven model caused deregulation of only 21 genes
(supplemental Figure 5A-B). As an orthogonal approach, we
performed RNA-seq upon RNAi-mediated suppression of
RUNX1/EVI1 in cultured rtTA3-expressing leukemia cells, which
altered the expression of 1341 genes, 514 of which overlapped
with changes observed after RUNX1/EVI1 suppression in our
Dox-repressible model in vivo (Figure 3A-C). To further delin-
eate critical EVI1 targets that are conserved between species,
we compared the response to EVI1 suppression in our mouse
model to transcriptional effects observed upon shRNA-mediated
knockdown of EVI1 in HNT-34 cells (supplemental Figure 5C-F;
supplemental Table 2). In GO term analyses, genes involved in
cytokine response and hematopoiesis were upregulated and
downregulated, respectively, to similar degrees in culture and
in vivo (Figure 3D). Regulators of intracellular signaling were
distinct between cultured cells and in vivo, whereas regulators of
cell migration and adhesion were in vivo specific, indicating that
EVI1 fulfills important functions in microenvironmental interac-
tions that are not captured in culture.

To identify critical EVI1 targets that are conserved between
species and in vivo and in vitro culture, we compared the
response to EVI1 suppression in our mouse models to tran-
scriptional effects observed upon shRNA-mediated knockdown
of EVI1 in HNT-34 cells. This intersection revealed a core set of
35 upregulated and 33 downregulated context- and species-
independent EVI1 target genes (Figure 3E), in line with its
proposed dual function as a transcriptional activator and a
repressor. Genes commonly upregulated upon EVI1 suppres-
sion included the cell cycle regulators CDK6 and CCND3, which
may promote the transient amplification of myeloid progenitors
observed upon EVI1 withdrawal in our mouse model
(supplemental Figure 4). Genes that were commonly down-
regulated upon EVI1 suppression included several transcription
factors and transcriptional coregulators (ie, BCL11A, CBX6,
ERG, HHEX, and LYL1), and this core set of EVI1-dependent
transcripts was significantly enriched in patients with EVI1-
rearranged AML as compared with other AML subtypes
(Figure 3F; supplemental Figure 5G-H). This suggests that EVI1
controls a limited set of conserved transcriptional target genes
that are prime candidates for mediating its oncogenic functions.
ERG is a transcriptional target of EVI1 that
is selectively required in EVI1-driven AML
To systematically explore the functional relevance of conserved
transcriptional targets and other EVI1-associated dependencies,
we complemented our genome-wide CRISPR screen in HNT-34
cells with a similar screen in our RUNX1/EVI1;NrasG12D

–driven
mouse model (Figure 2G). We introduced the mouse version
of the Vienna sgRNA library35 into Cas9-expressing RUNX1/
EVI1;NrasG12D AML cells and determined the representation of
sgRNAs after 14 population doublings (supplemental Figure 6A).
To distinguish EVI1-associated from more broadly relevant AML
2 FEBRUARY 2023 | VOLUME 141, NUMBER 5 457
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dependencies, we performed a parallel screen in an established
MLL/AF9;NrasG12D

–driven AML mouse model.58 Both screens
clearly separated core essential and nonessential genes
(supplemental Figure 6B; supplemental Table 3), and their
comparison revealed numerous selective dependencies in
RUNX1/EVI1;NrasG12D

–driven AML, several of which were also
detected in HNT-34 cells, such as the transcriptional regulators
Gata2, Erg, Etv6, and Runx3 (supplemental Figure 6C).

From the core set of 33 conserved transcriptionally activated
targets of EVI1, only 3 transcription factors, Bcl11a, Erg, and
Hhex, were required in murine RUNX1/EVI1;NrasG12D

–driven
AML cells (Figure 4A). Further integration of genome-wide
CRISPR screening data revealed the ETS-related transcription
factor ERG as the only gene that represents both a conserved
transcriptional target and a context-specific dependency in
human and murine EVI1–dependent AML (Figure 4A-B).

To probe the relevance of ERG and other EVI1-associated
dependencies beyond our models, we integrated our and other
data sets from high-quality CRISPR screens in human and murine
AML cell lines23,25-27 and determined selective dependencies
associated with specific driver mutations. To benchmark this
approach, we first extracted selective dependencies in a group
of 8 MLL-rearranged AML cell lines. Among top-scoring MLL-
associated dependencies, we identified several factors that are
known to be required for MLL fusion protein–driven leukemo-
genesis, such as MEN1, SRPK1, ZFP64, and SIK336,37,59,60

(supplemental Figure 6D). Applying this systematic approach to
EVI1-dependent AML cell lines identified ERG as the most
prominent selective dependency (Figure 4C).

These findings prompted us to further investigate the role of
ERG as a critical downstream target of EVI1. Suppression of
EVI1 in human HNT-34 and murine RUNX1/EVI1;NrasG12D

–

driven AML cells led to a strong reduction of ERG mRNA and
protein levels (Figure 4D-F). To investigate whether these
effects are based on a direct role of EVI1 in ERG transcription,
we determined genomic EVI1-binding sites using ChIP-seq in 2
EVI1-rearranged AML cell lines and a primary patient sample.
The ERG locus harbored prominent EVI1 binding sites in 2
intragenic regions that were consistently detected in all 3 sam-
ples and overlapped with enhancer-associated H3K27 acetyla-
tion marks and regions of accessible chromatin determined
by ATAC-seq (Figure 4G). Further analyses revealed that
this conserved EVI1-bound enhancer region represents the well-
described ERG +85 enhancer that contributes to ERG regulation
in healthy and leukemic cells.43 Together with our expression
data, this suggests that EVI1 directly drives ERG expression via
interactions with 2 conserved enhancer elements.

To functionally validate the selective dependency of EVI1-
driven AML cell lines on ERG, we suppressed ERG expression
in HNT-34 and several EVI1-independent human AML cell lines
Figure 3 (continued) days upon Dox-mediated RUNX1/EVI1 knockdown in vitro compare
(y-axis). Red dots represent commonly upregulated genes. Blue dots represent common
transcriptional changes 3 days upon shRNA-mediated RUNX1/EVI1 knockdown in vitro a
term enrichment analyses of gene sets deregulated upon EVI1 or RUNX1/EVI1 shutdown
upregulated and downregulated genes of human HNT-34 cells upon EVI1 knockdown an
protein repression (adjusted P < .05). (F) Gene set enrichment analysis illustrating the enric
AML with EVI1 rearrangements. IFN-γ, interferon gamma; NES, normal enrichment score

EVI1 DRIVES AML THROUGH ABERRANT ERG ACTIVATION
using Dox-inducible RNAi. In accordance with results from
CRISPR screens, shRNA-mediated knockdown of ERG strongly
impaired the proliferation of EVI1-driven HNT-34 cells, whereas
EVI1-independent AML cell lines were unaffected (Figure 5A;
supplemental Figures 6E-F and 7A-C). Similarly, CRISPR/Cas9-
mediated knockout and shRNA-mediated knockdown of Erg
had no effects on MLL/AF9;NrasG12D

–driven murine AML
cells, whereas the proliferation of RUNX1/EVI1;NrasG12D

–driven
AML cells was strongly impaired (Figure 5B; supplemental
Figures 6G and 7D-F). These effects were accompanied by a
reduction in c-Kit and an increase in Mac-1 surface expression
levels (Figure 5C), morphological signs of myeloid differentia-
tion (Figure 5D), and the induction of apoptosis (Figure 5E).
Taken together, these results establish ERG as an important
EVI1 target that is required for maintaining the immature state
of EVI1-driven AML cells.
Major oncogenic effects of EVI1 are mediated
through aberrant activation of ERG
To delineate the relationship and regulatory roles of EVI1 and
ERG, we investigated dynamic changes in accessible chromatin
upon EVI1 suppression in RUNX1/EVI1;NrasG12D

–driven AML
cells using ATAC-seq. Genes that were downregulated upon
knockdown of EVI1 showed a marked reduction in chromatin
accessibility (Figure 6A). Regions with reduced accessibility
upon EVI knockdown included several regions in the Erg locus
(supplemental Figure 8A), further suggesting that EVI1 directly
activates ERG transcription. To systematically explore tran-
scription factors that might contribute to aberrant gene
activation in EVI1-driven AML, we quantified transcription
factor–binding motifs in differentially accessible regions of
EVI1-dependent genes (Figure 6C). As expected, the
consensus motif of EVI1 itself showed a strong enrichment
(Figure 6D). The ERG motif was almost as strongly enriched as
EVI1 in open chromatin sites around EVI1-dependent genes.
Moreover, reanalysis of publicly available ERG ChIP-seq
data61,62 revealed ERG-binding sites in many genomic regions
within EVI1-regulated genes (Figure 6B), suggesting that a large
fraction of EVI1-induced transcriptional effects is mediated via
aberrant activation of ERG. Alternatively, ERG could represent an
essential cofactor of EVI1-dependent transcriptional regulation.

To distinguish between these 2 scenarios, we asked whether
ectopic ERG expression could restore the proliferation of AML
cells in the absence of EVI1 (supplemental Figure 8B). In
competitive proliferation assays, knockdown of either RUNX1/
EVI1 or Myc strongly impaired the proliferation of AML cells.
Strikingly, ectopic expression of ERG fully rescued the detrimen-
tal effects of EVI1 suppression, whereas sensitivity to Myc sup-
pression was retained (Figure 6E). Moreover, restoration of ERG
expression fully prevented the induction ofmyeloid differentiation
upon EVI1 knockdown (Figure 6F-G), thus rescuing the prevalent
phenotype of oncogene withdrawal in EVI1-driven AML.
d with nontargeting control (x-axis) vs Dox-mediated RUNX1/EVI1 repression in vivo
ly downregulated genes. (C) Venn diagram illustrating significant (adjusted P < .05)
nd Dox-mediated RUNX1/EVI1 repression in vivo in murine leukemia cells. (D) GO
in human and murine leukemia in vitro or in vivo. (E) Heatmap of the 68 commonly
d BM-derived murine RUNX1/EVI1-driven leukemia cells upon Dox-mediated fusion
hment of the genes that are downregulated upon loss of EVI1 in human patients with
; NF, nuclear factor; TGFβ, transforming growth factor β; TNF, tumor necrosis factor.
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Figure 4. ERG is a direct transcriptional target of EVI1 in murine and human AML. (A) Genome-wide CRISPR/Cas9-based loss-of-function screens in murine RUNX1/EVI1
vs MLL/AF9-driven leukemia cells. Gray dots illustrate all genes. Dark blue dots represent conserved transcriptional targets of EVI1. Axis shows FDR-adjusted normalized log2
FC. Dashed box represents genes with an FDR-adjusted normalized log2 FC < −0.5 in murine RUNX1/EVI1-driven and > −0.5 in murine MLL/AF9-driven AML. (B) Genome-
wide CRISPR/Cas9-based loss-of-function screens in murine RUNX1/EVI1-driven vs human HNT-34 AML cells. Gray dots illustrate all genes. Dark blue dots represent
conserved transcriptional targets of EVI1. Axis shows FDR-adjusted normalized log2 FC. Dashed box represents genes with an FDR-adjusted normalized log2 FC < −0.5 in
murine RUNX1/EVI1-driven AML and < −0.5 in human HNT-34 cells. (C) Comparative analysis of loss-of-function–mediated gene effects in human and murine EVI1–dependent
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differential gene effect between the 2 groups. Y-axis depicts the log-transformed Bayesian factor. (D) Expression of ERG in human HNT-34 cells 5 days upon shRNA-mediated
EVI1 knockdown in vitro and in murine ex vivo–derived RUNX1/EVI1-driven leukemia cells extracted from the BM of mice upon 3 days of Dox treatment (mean ± standard
deviation [SD]; n = 3). (E) Flow cytometric analysis of intracellular RUNX1/EVI1 and ERG levels in murine leukemia cells 5 days upon RUNX1/EVI1 knockdown compared with
nontargeting and isotype control. (F) Quantification of the mean fluorescence intensity of RUNX1/EVI1 and ERG levels as determined by flow cytometry in murine leukemia
cells 5 days upon RUNX1/EVI1 knockdown, compared with knockdown of Myc and nontargeting shRen.713 (mean ± SD; n = 3). (G) EVI1 occupancy at the ERG locus. H3K27ac
ChIP-seq in HNT-34 and MOLM-1 (gray). EVI1 ChIP-seq in HNT-34, MOLM-1 and primary patient-derived AML cells (EVI1-R, blue). ATAC-seq in patient-derived AML cells (red).
The +85 stem cell enhancer region43 is indicated. ns, not significant.
To characterize the ERG-dependent transcriptional program
underlying these effects, we determined transcriptional
changes following EVI1 withdrawal in the presence or absence
of ectopically expressed ERG. Remarkably, ectopic expression
of ERG rescued the expression of 34% of all genes that were
460 2 FEBRUARY 2023 | VOLUME 141, NUMBER 5
downregulated upon EVI1 withdrawal (supplemental Figure 8C;
supplemental Table 4). ERG-dependent target genes included
surface markers of hematopoietic stem and progenitor cells
(Slamf1, Kit) and critical regulators of cancer cell proliferation
and survival such as Myc and the MDM2-binding protein Mtbp
SCHMOELLERL et al
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driven AML. Competitive proliferation assays, showing
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positive controls, respectively (mean ± SD; n = 3). (A)
Competitive proliferation assay using human AML cell
lines. (B) Competitive proliferation assay using RUNX1/
EVI1-driven vs MLL/AF9-driven murine leukemia cells. (C)
Flow cytometric analyses of murine RUNX1/EVI1-driven
leukemia cells 7 days post Dox-mediated shRNA induc-
tion (mean ± SD; n = 3). Quantification of c-Kit and Mac-1
surface marker expression. (D) Representative cytospin
images of purified murine RUNX1/EVI1-driven leukemia
cells expressing indicated shRNAs 10 days post Dox-
mediated shRNA induction. (E) Flow cytometric ana-
lyses of murine RUNX1/EVI1-driven leukemia cells 7 days
post Dox-mediated shRNA induction (mean ± SD; n = 3).
Quantification of annexin V-positive cells.
(Figure 6H). In addition, several genes associated with
hematopoietic differentiation that were induced upon EVI1
withdrawal (eg, Pf4, Hemgn, and Cpox) remained silent in the
EVI1 DRIVES AML THROUGH ABERRANT ERG ACTIVATION
presence of ectopically expressed ERG. A significant fraction of
these rescued genes was also bound by ERG61,62 (supplemental
Figure 8D). Together, these data suggest that ERG controls an
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oncogenic transcriptional program downstream of EVI1 that is
essential for the survival of EVI1-driven AML cells.

Given the regulatory relationship between EVI1 and ERG in our
human and murine model systems, we analyzed a possible
association of these genes in RNA-seq data from samples from
patients with AML harboring EVI1 rearrangements. Indeed,
expression levels of EVI1 and ERG were highly correlated
(R = 0.85, P < .001), indicating that EVI1 drives aberrant ERG
expression also in primary human AML (Figure 6I). Collectively,
our findings establish ERG as a key transcriptional target of EVI1
that mediates aberrant self-renewal and impaired cell differen-
tiation in EVI1-driven leukemogenesis (Figure 6J).

Discussion
Genome-wide CRISPR screens have emerged as a powerful tool
to systematically define essential genes in cancer cell lines and
thereby uncover vulnerabilities that might be exploitable for
therapy. Although this approach has been widely used to map
context-specific dependencies in >100 leukemia cell lines,22-28

these so far excluded EVI1-dependent AML because of a lack of
suitable cell culture models. Although our findings suggest that
several commonly used cell line models of EVI1-driven AML have
lost their dependency on EVI1, it remains to be determined
whether such phenomena are cell culture artifacts or can occur in
patients. Our study identifies and characterizes the AML cell line
HNT-34, which harbors a t(3;3(q21;q26) rearrangement33 and has
uniquely retained a strong dependency on EVI1, as a relevant and
experimentally tractable human cell culture model.

Asa complementaryexperimental system,weestablishedapanel of
RUNX1/EVI1;NrasG12D–drivenAMLmousemodels that recapitulate
phenotypic and transcriptional states of human EVI1–rearranged
AML and enable Tet-conditional functional genetic studies. In
various configurations, RUNX1/EVI1 and NrasG12D consistently
induced an AML-like disease that was dominated by very immature
blasts that retained stem cell–like properties, which may underly
chemotherapy resistance and other characteristics of EVI1-
rearranged AML.7,21,63 Withdrawal of RUNX1/EVI1 in vivo released
immatureblasts into a terminal differentiationprogram that involved
an early phase of enhanced proliferation, which resembles the
transition fromquiescentHSCs to amplifyingprogenitor cells during
normal hematopoiesis. This transition was accompanied by tran-
scriptional activation of cell cycle regulators such as CDK6 and
CCND3, which was also observed following EVI1 suppression in
human HNT-34 cells. It is tempting to speculate that leukemia cells
entering this transientproliferativephase followingEVI1 suppression
are particularly vulnerable to cytostatic agents, suggesting that tar-
geted therapies interfering with EVI1 could be rationally combined
with conventional chemotherapy in a sequential manner. Cell cycle
andmicroenvironmental effects of EVI1might be furthermodulated
by Ras pathway mutations or monosomy 7 with associated
SAMD9/SAMD9L mutations,64,65 which both recurrently co-occur
with EVI1-rearrangements in patients with AML.54

Parallel genome-wide CRISPR screens in HNT-34 cells and
an AML cell line derived from our RUNX1/EVI1; NrasG12D

–

driven AML mouse model revealed several EVI1-associated
dependencies that were not identified in our own and other
published CRISPR-based dropout screens in EVI1-negative AML
cell lines. Prominent EVI1-specific dependencies include
EVI1 DRIVES AML THROUGH ABERRANT ERG ACTIVATION
members of the CTBP transcriptional corepressor family, which
are known interaction partners of EVI1,17,18 and the transcrip-
tion factor GATA2, a master regulator in normal hematopoiesis.
Interestingly, although haploinsufficiency of GATA2 is known to
cooperate with aberrant EVI1 expression during leukemogen-
esis,9,10,66 its function is selectively required in human and
murine EVI1–driven AML. Notably, our CRISPR screens in
RUNX1/EVI1; NrasG12D

–driven AML did not detect a depen-
dency on Ckmt1, which has been proposed as a candidate
target in EVI1-driven AML.32 Our human CRISPR library, owing
to a lack of gene-specific sgRNA predictions, only contained
sgRNAs targeting one of the human paralogs, CKMT1B, which
did not score in HNT-34 cells. We also could not detect
expression of CKMT1 genes in HNT-34 cells, our mouse
models, or samples from patients with EVI1-rearranged AML
used in our study, indicating that a dependency on CKMT1 is
not a generalizable feature of EVI1-driven AML.

Genes that were both commonly downregulated following EVI1
suppression and essential in human and murine EVI1–driven
AML models included 3 transcription factors. BCL11A plays an
important role in the regulation of globin gene expression67

and has recently been shown to promote leukemogenesis by
repressing PU.1 target genes.68 The homeobox protein HHEX1
has been shown to repress the Cdkn2a-encoded tumor sup-
pressors p16INK4a and p19ARF through recruitment of the
polycomb repressive complex 2 and thereby promote MLL/
ENL-driven leukemogenesis.69 Although both BCL11A and
HHEX1 appear to be more broadly implicated in leukemo-
genesis, the most prominent and selective EVI1-specific
dependency turned out to be the ETS transcription factor
ERG, which we characterized as a conserved transcriptional
target of EVI1 in human and murine EVI1–driven AML.

In normal hematopoiesis, ERG is predominantly expressed in HSCs
and, similar to EVI1, is known to be required for their maintenance
by restricting differentiation.6,42,70 In AML, high expression of both
EVI1 and ERG has been proposed as a molecular marker to stratify
AML cases that derive from transformed HSCs as cell of origin and
are associated with poor prognosis.16,71 Expression of FUS-ERG
fusion proteins resulting from rare t(16;21) rearrangements is
thought to promote AML through repression of retinoic acid
signaling,72,73 whereas focal or large amplifications of chromosome
21 can lead to overexpression of ERG in diverseAML subtypes.74,75

Our data suggest that EVI1 commonly drives aberrant ERG
expression in AML via its intragenic +85 enhancer, similar to what
has been described for various oncogenes in T-cell acute
lymphoblastic leukemia.76 Supporting such a role, a complemen-
tary study by Masamoto et al. has identified ERG as an important
transcriptional target of EVI1 through characterizing chromatin
binding of Evi1 and transcriptional profiling in a newly generated
mouse model.77 Although several mechanisms can lead to aber-
rant ERG activation, a dependency on ERG is only observed in a
few leukemia cell lines.26,78 Beyond leukemia, chromosomal rear-
rangements leading to aberrant expression of TMPRSS2/ERG
fusion proteins are the most frequent driver events in human
prostate cancer,79 whereas EWS/ERG fusion proteins are major
drivers of Ewing sarcoma.80 Although the molecular functions of
ERG fusion proteins and differentiation hierarchies remain incom-
pletely understood in these tissues, it is tempting to speculate that
aberrant ERG expression also arrests immature progenitor cells in
these tumor types.
2 FEBRUARY 2023 | VOLUME 141, NUMBER 5 463



In EVI1-driven AML, our study uncovers ERG as a conserved and
critical transcriptional target of EVI1 that is required and suffi-
cient to arrest leukemia cells in a stem cell–like state. New
classes of targeted therapeutics such as molecular glue
degraders and protein interaction inhibitors provide a promising
avenue for interfering with this unique regulatory relationship
between EVI1 and ERG and thereby developing rational thera-
peutics that are urgently needed in EVI1-driven AML.
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